Upregulation of utrophin, the autosomal homologue of dystrophin, can compensate dystrophin deficiency in Duchenne Muscular Dystrophy (DMD) although the therapeutic success is yet to be achieved. The present study has identified Poly (C) binding protein 2 (PCBP2) as a post-transcriptional suppresser for the expression of utrophin-A, the muscle-specific utrophin isoform. This study confirms nuclear retention of utrophin-A mRNA in C2C12 cells, which is mediated by PCBP2.
View Article and Find Full Text PDFMutation in the dystrophin gene results Duchenne Muscular Dystrophy (DMD), an X-linked fatal neuromuscular disorder. Dystrophin deficiency can be compensated by upregulation of utrophin, an autosomal homologue of dystrophin. But the expression of utrophin in adults is restricted to myotendinous and neuromuscular junctions.
View Article and Find Full Text PDFShigellosis is a public health threat in developed as well as developing countries like "India." While antibiotic therapy is the mainstay of treatment for shigellosis, current emergence of multidrug-resistant strains of spp. has posed the problem more challenging.
View Article and Find Full Text PDFUtrophin, the autosomal homologue of dystrophin can functionally compensate for dystrophin deficiency. Utrophin upregulation could therefore be a therapeutic strategy in Duchenne Muscular Dystrophy (DMD) that arises from mutation in dystrophin gene. In contrast to its transcriptional regulation, mechanisms operating at post-transcriptional level of utrophin expression have not been well documented.
View Article and Find Full Text PDFCommercially available reagents and published protocols are widely used for RNA isolation. However, genomic DNA contamination in isolated RNA is a potential problem. Here we describe a simple, inexpensive method for eliminating genomic DNA contamination beyond the level of PCR-based detection through reduction of the guanidine thiocyanate concentration (1.
View Article and Find Full Text PDFBackground: Utrophin is the autosomal homolog of dystrophin, the product of the Duchenne Muscular Dystrophy (DMD) locus. Its regulation is of therapeutic interest as its overexpression can compensate for dystrophin's absence in animal models of DMD. The tissue distribution and transcriptional regulation of utrophin have been characterized extensively, and more recently translational control mechanisms that may underlie its complex expression patterns have begun to be identified.
View Article and Find Full Text PDFUtrophin (Utrn) is the autosomal homolog of dystrophin, the Duchene Muscular Dystrophy (DMD) locus product and of therapeutic interest, as its overexpression can compensate dystrophin's absence. Utrn is transcribed by Utrn-A and -B promoters with mRNAs differing at their 5' ends. However, previous central nervous system (CNS) studies used C-terminal antibodies recognizing both isoforms.
View Article and Find Full Text PDFUtrophin is the autosomal homolog of dystrophin, the product of the Duchenne's muscular dystrophy (DMD) locus. Utrophin is of therapeutic interest since its over-expression can compensate dystrophin's absence. Utrophin is enriched at neuromuscular junctions due to heregulin-mediated utrophin-A promoter activation.
View Article and Find Full Text PDFUtrophin is the autosomal homologue of dystrophin, the protein product of the Duchenne's muscular dystrophy (DMD) locus. Utrophin expression is temporally and spatially regulated being developmentally down-regulated perinatally and enriched at neuromuscular junctions (NMJs) in adult muscle. Synaptic localization of utrophin occurs in part by heregulin-mediated extracellular signal-regulated kinase (ERK)-phosphorylation, leading to binding of GABPalpha/beta to the N-box/EBS and activation of the major utrophin promoter-A expressed in myofibers.
View Article and Find Full Text PDFBackground: Hemophilia A is a congenital disorder caused by a deficiency of the blood-clotting factor VIII (FVIII) and is an attractive candidate for gene therapy. Most of the studies have only explored the potential of hepatocytes and muscle cells as the targets for gene transfer. Attempts to transfer the genes into hematopoietic cells have so far been mostly unsuccessful due to inefficiency of most viral vectors to transduce these cells and the supposed inability of the cells to express FVIII.
View Article and Find Full Text PDF