Since their introduction sixty years ago, cell assemblies have proved to be a powerful paradigm for brain information processing. After their introduction in artificial intelligence, cell assemblies became commonly used in computational neuroscience as a neural substrate for content addressable memories. However, the mechanisms underlying their formation are poorly understood and, so far, there is no biologically plausible algorithms which can explain how external stimuli can be online stored in cell assemblies.
View Article and Find Full Text PDFThis letter aims at studying the impact of iterative Hebbian learning algorithms on the recurrent neural network's underlying dynamics. First, an iterative supervised learning algorithm is discussed. An essential improvement of this algorithm consists of indexing the attractor information items by means of external stimuli rather than by using only initial conditions, as Hopfield originally proposed.
View Article and Find Full Text PDF