The opioid system in the brain is responsible for processing affective states such as pain, pleasure, and reward. It consists of three main receptors, mu- (μ-ORs), delta- (δ-ORs), and kappa- (κ-ORs), and their ligands - the endogenous opioid peptides. Despite their involvement in the reward pathway, and a signaling mechanism operating in synergy with the dopaminergic system, fewer reports focus on the role of these receptors in higher cognitive processes.
View Article and Find Full Text PDFBrain Struct Funct
November 2019
Although the catecholaminergic circuitry in the zebra finch brain has been well studied, there is little information regarding the postsynaptic targets of dopamine. To answer this question, we looked at overall patterns of immunoreactivity for DARPP-32 (a dopamine and cAMP-regulated phosphoprotein, present mostly in dopaminoceptive neurons) in adult male zebra finches. Our results demonstrated that as in mammals and other avian species, DARPP-32 expression was highest in both medial and lateral striatum.
View Article and Find Full Text PDFAlthough the interplay between endogenous opioids and dopamine (DA) in the basal ganglia (BG) is known to underlie diverse motor functions, few studies exist on their role in modulating speech and vocalization. Vocal impairment is a common symptom of Parkinson's disease (PD), wherein DA depletion affects striosomes rich in μ-opioid receptors (μ-ORs). Symptoms of opioid addiction also include deficiencies in verbal functions and speech.
View Article and Find Full Text PDFBackground: Although genomic DNA isolation using the Chelex 100 resin is rapid and inexpensive, the DNA obtained by this method has a low concentration in solution and contains suspended impurities. The presence of debris in the DNA solution may result in degradation of DNA on long term storage and inhibition of the polymerase chain reaction. In order to remove impurities and concentrate the DNA in solution, we have introduced modifications in the existing DNA isolation protocol using Chelex-100.
View Article and Find Full Text PDFBrain Struct Funct
September 2016
We had earlier demonstrated a neurofilament-rich plexus of axons in the presumptive human auditory cortex during fetal development which became adult-like during infancy. To elucidate the origin of these axons, we studied the expression of the vesicular glutamate transporters (VGLUT) 1 and 2 in the human auditory cortex at different stages of development. While VGLUT-1 expression predominates in intrinsic and cortico-cortical synapses, VGLUT-2 expression predominates in thalamocortical synapses.
View Article and Find Full Text PDF