Publications by authors named "Ute Urban"

Background: Hematoma is a common complication following arterial puncture. To date no device that allows sealing of an arterial puncture site with in-situ catheter has been developed.

Purpose: To evaluate a newly developed arterial sealing device for endovascular catheters in an in-vivo experimental setting.

View Article and Find Full Text PDF

Tricuspid valve regurgitation mostly occurs as result of dilation of the right ventricle, secondary to left heart valve diseases. Until recently, little attention has been given to the development of percutaneous therapeutic tools exclusively designed for tricuspid valve disease. A new approach to the interventional therapy of tricuspid regurgitation, in particular, the design of a conceptual new valve-bearing, self-expansible stent, is presented here.

View Article and Find Full Text PDF

This paper presents a novel fully implantable wireless sensor system intended for long-term monitoring of hypertension patients, designed for implantation into the femoral artery with computed tomography angiography. It consists of a pressure sensor and a telemetric unit, which is wirelessly connected to an extracorporeal readout station for energy supply and data recording. The system measures intraarterial pressure at a sampling rate of 30 Hz and an accuracy of ±1.

View Article and Find Full Text PDF

Replacement cardiac valves have been in use since the 1950s, and today represent the most widely used cardiovascular devices. One type of replacement cardiac valve, the polyurethane heart valve, has been around since the first stages of prosthesis development, and has made advances along with the development of biological and mechanical heart valves over the past 60 years. During this time, problems with durability and biocompatibility have held back polyurethane valves, but progress in materials and manufacturing techniques can lead the way to a brighter future for these devices and their huge potential.

View Article and Find Full Text PDF

The purpose of this study was to evaluate the technical and animal experimental feasibility of a percutaneously implantable pulmonary arterial implant for permanent hemodynamic monitoring. Two systems for measuring pulmonary artery pressure (PAP) as well as pulmonary artery occlusion pressure (PAOP) were developed by modifying a commercially available pulmonary artery catheter (PAC). First, a cable-bound catheter-based system was designed by implementation of a capacitive absolute-pressure sensor in the catheter tip.

View Article and Find Full Text PDF