Knowledge of the structure-property relationships of functional nanomaterials, including, for example, their size- and composition-dependent photoluminescence (PL) and particle-to-particle variations, is crucial for their design and reproducibility. Herein, the Angstrom-resolution capability of an analytical ultracentrifuge combined with an in-line multiwavelength emission detection system (MWE-AUC) for measuring the sedimentation coefficient-resolved spectrally corrected PL spectra of dispersed nanoparticles is demonstrated. The capabilities of this technique are shown for giant-shell CdSe/CdS quantum dots (g-QDs) with a PL quantum yield (PL QY) close to unity capped with oleic acid and oleylamine ligands.
View Article and Find Full Text PDFThe increasing industrial use of nanomaterials calls for the reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry, and test and reference materials (RMs) with sizes and shapes, closely matching real-world nonspheric nano-objects. An efficient strategy to minimize efforts in producing nanoscale RMs (nanoRMs) for establishing, validating, and standardizing methods for characterizing nanomaterials are multimethod nanoRMs. Ideal candidates are lanthanide-based, multicolor luminescent, and chemically inert nanoparticles (NPs) like upconversion nanoparticles (UCNPs), which can be prepared in different sizes, shapes, and chemical composition with various surface coatings.
View Article and Find Full Text PDFIn nature, molecular environments in proteins can sterically protect and stabilize reactive species such as organic radicals through non-covalent interactions. Here, we report a near-infrared fluorescent rotaxane in which the stabilization of a chemically labile squaraine fluorophore by the coordination of a tetralactam macrocycle can be controlled chemically and electrochemically. The rotaxane can be switched between two co-conformations in which the wheel either stabilizes or exposes the fluorophore.
View Article and Find Full Text PDFHighly emissive AgS nanocrystals (NCs) passivated with a gradated shell incorporating Se and Zn were synthesized in air, and the temperature dependence of their photoluminescence quantum yield (PLQY) was quantified in both organic and aqueous media at ∼1200 nm. The relevance of this parameter, measured at physiological temperatures, is highlighted for applications that rely on the near infrared (NIR) photoluminescence of NCs, such as deep NIR imaging or luminescence nanothermometry. Hyperspectral NIR imaging shows that AgS-based NCs with a PLQY in organic media of about 10% are inefficient for imaging at 40 °C through 20 mm thick tissue with low laser irradiation power densities.
View Article and Find Full Text PDFOne remaining handicap for spatially resolved elemental quantification in biological samples is the lack of a suitable internal standard (IS) that can be reliably measured across both calibration standards and samples. In this work, multielement quantitative intracellular imaging of cells tagged with lanthanide nanoparticles containing key lanthanides, e.g.
View Article and Find Full Text PDFMany organic dyes are fluorescent in solution. In the solid state, however, quenching processes often dominate, hampering material science applications such as light filters, light-emitting devices, or coding tags. We show that the dimethylene-cyclopropanide scaffold can be used to form two structurally different types of chromophores, which feature fluorescence quantum yields up to 0.
View Article and Find Full Text PDFLuminophore stained micro- and nanobeads made from organic polymers like polystyrene (PS) are broadly used in the life and material sciences as luminescent reporters, for bead-based assays, sensor arrays, printable barcodes, security inks, and the calibration of fluorescence microscopes and flow cytometers. Initially mostly prepared with organic dyes, meanwhile luminescent core/shell nanoparticles (NPs) like spherical semiconductor quantum dots (QDs) are increasingly employed for bead encoding. This is related to their narrower emission spectra, tuneability of emission color, broad wavelength excitability, and better photostability.
View Article and Find Full Text PDFFluorescent labels have strongly contributed to many advancements in bioanalysis, molecular biology, molecular imaging, and medical diagnostics. Despite a large toolbox of molecular and nanoscale fluorophores to choose from, there is still a need for brighter labels, e.g.
View Article and Find Full Text PDFDespite the physiological and pathophysiological significance of microenvironmental gradients, e.g., for diseases such as cancer, tools for generating such gradients and analyzing their impact are lacking.
View Article and Find Full Text PDFAmphiphilic nanogels (ANGs) are promising carriers for hydrophobic cargos such as drugs, dyes, and catalysts. Loading content and release kinetics of these compounds are controlled by type and number of hydrophobic groups in the amphiphilic copolymer network. Thus, understanding the interactions between cargo and colloidal carrier is mandatory for a tailor-made and cargo-specific ANG design.
View Article and Find Full Text PDFScattering luminescent materials dispersed in liquid and solid matrices and luminescent powders are increasingly relevant for fundamental research and industry. Examples are luminescent nano- and microparticles and phosphors of different compositions in various matrices or incorporated into ceramics with applications in energy conversion, solid-state lighting, medical diagnostics, and security barcoding. The key parameter to characterize the performance of these materials is the photoluminescence/fluorescence quantum yield (Φ), i.
View Article and Find Full Text PDFHeterogeneous sandwich immunoassays are widely used for biomarker detection in bioanalysis and medical diagnostics. The high analyte sensitivity of the current "gold standard" enzyme-linked immunosorbent assay (ELISA) originates from the signal-generating enzymatic amplification step, yielding a high number of optically detectable reporter molecules. For future point-of-care testing (POCT) and point-of-need applications, there is an increasing interest in more simple detection strategies that circumvent time-consuming and temperature-dependent enzymatic reactions.
View Article and Find Full Text PDFThe 2023 Nobel Prize in Chemistry was awarded to Aleksey I. Ekimov (prize share 1/3), Louis E. Brus (prize share 1/3), and Moungi G.
View Article and Find Full Text PDFFour donor-acceptor boron difluoride complexes based on the carbazole electron donor and the [1,3,5,2]oxadiazaborinino[3,4-a][1,8]naphthyridine acceptor were designed, synthesized, and systematically spectroscopically investigated in solutions, in dye-doped polymer films, and in the solid states. The dyes exhibit an intense blue to red solid-state emission with photoluminescence quantum yields of up to 59 % in pure dye samples and 86 % in poly(methyl methacrylate) films. All boron complexes show aggregation-induced emission and reversible mechanofluorochromism.
View Article and Find Full Text PDFThe rational design and increasing industrial use of nanomaterials require a reliable characterization of their physicochemical key properties like size, size distribution, shape, and surface chemistry. This calls for nanoscale reference materials (nanoRMs) for the validation and standardization of commonly used characterization methods closely matching real-world nonspherical nano-objects. This encouraged us to develop a nonspherical nanoRM of very small size consisting of 8 nm iron oxide nanocubes (BAM-N012) to complement spherical gold, silica, and polymer nanoRMs.
View Article and Find Full Text PDFSurface-functionalized polymer beads encoded with molecular luminophores and nanocrystalline emitters such as semiconductor nanocrystals, often referred to as quantum dots (QDs), or magnetic nanoparticles are broadly used in the life sciences as reporters and carrier beads. Many of these applications require a profound knowledge of the chemical nature and total number of their surface functional groups (FGs), that control bead charge, colloidal stability, hydrophobicity, and the interaction with the environment and biological systems. For bioanalytical applications, also the number of groups accessible for the subsequent functionalization with, e.
View Article and Find Full Text PDFComparing the performance of molecular and nanoscale luminophores and luminescent micro- and nanoparticles and estimating achievable signal amplitudes and limits of detection requires a standardizable intensity scale. This initiated the development of the relative MESF (number of molecules of equivalent soluble fluorochromes) and ERF (equivalent reference fluorophores) scales for flow cytometry and fluorescence microscopy. Both intensity scales rely on fluorescence intensity values assigned to fluorescent calibration beads by an intensity comparison to spectrally closely matching fluorophore solutions of known concentration using a spectrofluorometer.
View Article and Find Full Text PDFThe frequency-domain (FD) method provides an alternative to the commonly used time-domain (TD) approach in characterizing the luminescence kinetics of luminophores, with its own strengths, e.g., the capability to decouple multiple lifetime components with higher reliability and accuracy.
View Article and Find Full Text PDFThe rational design of next generation molecular and nanoscale reporters and the comparison of different emitter classes require the determination of the fluorometric key performance parameter fluorescence quantum yield (Φ), i.e., the number of emitted photons per number of absorbed photons.
View Article and Find Full Text PDFLanthanide-based, spectrally shifting, and multi-color luminescent upconverting nanoparticles (UCNPs) have received much attention in the last decades because of their applicability as reporter for bioimaging, super-resolution microscopy, and sensing as well as barcoding and anti-counterfeiting tags. A prerequisite for the broad application of UCNPs in areas such as sensing and encoding are simple, robust, and easily upscalable synthesis protocols that yield large quantities of UCNPs with sizes of 20 nm or more with precisely controlled and tunable physicochemical properties from low-cost reagents with a high reproducibility. In this context, we studied the reproducibility, robustness, and upscalability of the synthesis of β-NaYF:Yb, Er UCNPs via thermal decomposition.
View Article and Find Full Text PDFRatiometric green-red fluorescent nanosensors for fluorometrically monitoring pH in the acidic range were designed from 80 nm-sized polystyrene (PS) and silica (SiO) nanoparticles (NPs), red emissive reference dyes, and a green emissive naphthalimide pH probe, analytically and spectroscopically characterized, and compared regarding their sensing performance in aqueous dispersion and in cellular uptake studies. Preparation of these optical probes, which are excitable by 405 nm laser or LED light sources, involved the encapsulation of the pH-inert red-fluorescent dye Nile Red (NR) in the core of self-made carboxylated PSNPs by a simple swelling procedure and the fabrication of rhodamine B (RhB)-stained SiO-NPs from a silane derivative of pH-insensitive RhB. Subsequently, the custom-made naphthalimide pH probe, that utilizes a protonation-controlled photoinduced electron transfer process, was covalently attached to the carboxylic acid groups at the surface of both types of NPs.
View Article and Find Full Text PDFLuminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators.
View Article and Find Full Text PDFQuaternary ammonium compounds (QACs) are widely used as active agents in disinfectants, antiseptics, and preservatives. Despite being in use since the 1940s, there remain multiple open questions regarding their detailed mode-of-action and the mechanisms, including phenotypic heterogeneity, that can make bacteria less susceptible to QACs. To facilitate studies on resistance mechanisms towards QACs, we synthesized a fluorescent quaternary ammonium compound, namely -dodecyl-,-dimethyl-[2-[(4-nitro-2,1,3-benzoxadiazol-7-yl)amino]ethyl]azanium-iodide (NBD-DDA).
View Article and Find Full Text PDFThis paper discusses the feasibility of a novel strategy based on the combination of bioprinting nano-doping technology and laser ablation-inductively coupled plasma time-of-flight mass spectrometry analysis for the preparation and characterization of gelatin-based multi-element calibration standards suitable for quantitative imaging. To achieve this, lanthanide up-conversion nanoparticles were added to a gelatin matrix to produce the bioprinted calibration standards. The features of this bioprinting approach were compared with manual cryosectioning standard preparation, in terms of throughput, between batch repeatability and elemental signal homogeneity at 5 μm spatial resolution.
View Article and Find Full Text PDF