Activity-based probes (ABPs) are small molecules that exclusively form covalent bonds with catalytically active enzymes. In the last decade, they have especially been used in functional proteomics studies of proteases. Here, we present phosphoramidate peptides as a novel type of ABP for serine proteases.
View Article and Find Full Text PDFCovalent chemical probes enable investigation of a desired fraction of the proteome. It is possible to adjust the selectivity of these probes, so they either react with a certain amino acid in all proteins, a class of proteins or only a single protein species. A combination of specific reactive groups with additional recognition elements can fine tune probes to hit the desired proteins, even in the presence of related family members.
View Article and Find Full Text PDFProteases are important targets for the treatment of human disease. Several protease inhibitors have failed in clinical trials due to a lack of in vivo specificity, indicating the need for studies of protease function and inhibition in complex, disease-related models. The tight post-translational regulation of protease activity complicates protease analysis by traditional proteomics methods.
View Article and Find Full Text PDFActivity-based probes (ABPs) have found increasing use in functional proteomics studies. Recently, ABPs that can be employed in combination with click chemistry gained particular attention due to their flexible application in vitro and in vivo. Moreover, there is a continuous need for new ABPs that target small subsets of enzymes.
View Article and Find Full Text PDF