Analysis of biological processes is frequently performed with the help of phenotypic assays where data is mostly acquired in single end-point analysis. Alternative phenotypic profiling techniques are desired where time-series information is essential to the biological question, for instance to differentiate early and late regulators of cell proliferation in loss-of-function studies. So far there is no study addressing this question despite of high unmet interests, mostly due to the limitation of conventional end-point assaying technologies.
View Article and Find Full Text PDFBackground: With the completion of the human genome sequence the functional analysis and characterization of the encoded proteins has become the next urging challenge in the post-genome era. The lack of comprehensive ORFeome resources has thus far hampered systematic applications by protein gain-of-function analysis. Gene and ORF coverage with full-length ORF clones thus needs to be extended.
View Article and Find Full Text PDFSegmental duplications (SDs) play a key role in genome evolution by providing material for gene diversification and creation of variant or novel functions. They also mediate recombinations, resulting in microdeletions, which have occasionally been associated with human genetic diseases. Here, we present a detailed analysis of a large genomic region (about 240 kb), located on human chromosome 1q22, that contains a tandem SD, SD1q22.
View Article and Find Full Text PDF