Reducing the iridium demand in Proton Exchange Membrane Water Electrolyzers (PEM WE) is a critical priority for the green hydrogen industry. This study reports the discovery of a TiO-supported Ir@IrO(OH) core-shell nanoparticle catalyst with reduced Ir content, which exhibits superior catalytic performance for the electrochemical oxygen evolution reaction (OER) compared to a commercial reference. The TiO-supported Ir@IrO(OH) core-shell nanoparticle configuration significantly enhances the OER Ir mass activity from 8 to approximately 150 A g at 1.
View Article and Find Full Text PDFWater splitting has emerged as a promising route for generating hydrogen as an alternative to conventional production methods. Finding affordable and scalable catalysts for the anodic half-reaction, the oxygen evolution reaction (OER), could help with its industrial widespread implementation. Iron-containing Ni-based catalysts have a competitive performance for the use in commercial alkaline electrolyzers.
View Article and Find Full Text PDFCopper and nitrogen co-doped carbon catalysts exhibit a remarkable behavior during the electrocatalytic CO reduction (CORR), namely, the formation of metal nanoparticles from Cu single atoms, and their subsequent reversible redispersion. Here we show that the switchable nature of these species holds the key for the on-demand control over the distribution of CORR products, a lack of which has thus far hindered the wide-spread practical adoption of CORR. By intermitting pulses of a working cathodic potential with pulses of anodic potential, we were able to achieve a controlled fragmentation of the Cu particles and partial regeneration of single atom sites.
View Article and Find Full Text PDFThe electrochemical reduction of nitrates (NO ) enables a pathway for the carbon neutral synthesis of ammonia (NH), via the nitrate reduction reaction (NORR), which has been demonstrated at high selectivity. However, to make NH synthesis cost-competitive with current technologies, high NH partial current densities (j) must be achieved to reduce the levelized cost of NH. Here, the high NORR activity of Fe-based materials is leveraged to synthesize a novel active particle-active support system with FeO nanoparticles supported on atomically dispersed Fe-N-C.
View Article and Find Full Text PDFThe production of green hydrogen through alkaline water electrolysis is the key technology for the future carbon-neutral industry. Nanocrystalline CoO catalysts are highly promising electrocatalysts for the oxygen evolution reaction and their activity strongly benefits from Fe surface decoration. However, limited knowledge of decisive catalyst motifs at the atomic level during oxygen evolution prevents their knowledge-driven optimization.
View Article and Find Full Text PDFElectrochemical reduction of CO (CORR) is an attractive technology to reintegrate the anthropogenic CO back into the carbon cycle driven by a suitable catalyst. This study employs highly efficient multi-carbon (C) producing CuO nanocubes (NCs) decorated with CO-selective Au nanoparticles (NPs) to investigate the correlation between a high CO surface concentration microenvironment and the catalytic performance. Structure, morphology and near-surface composition are studied X-ray absorption spectroscopy and surface-enhanced Raman spectroscopy, high-energy X-ray diffraction as well as quasi X-ray photoelectron spectroscopy.
View Article and Find Full Text PDFThe catalytic oxidation of CO and CH can be strongly influenced by the structures of oxide phases that form on metallic catalysts during reaction. Here, we show that an epitaxial PdO(100) structure forms at temperatures above 600 K during the oxidation of Pd(100) by gaseous O atoms as well as exposure to O-rich mixtures at millibar partial pressures. The oxidation of Pd(100) by gaseous O atoms preferentially generates an epitaxial, multilayer PdO(101) structure at 500 K, but initiating Pd(100) oxidation above 600 K causes an epitaxial PdO(100) structure to grow concurrently with PdO(101) and produces a thicker and rougher oxide.
View Article and Find Full Text PDFBimetallic transition-metal oxides, such as spinel-like CoFeO materials, are known as attractive catalysts for the oxygen evolution reaction (OER) in alkaline electrolytes. Nonetheless, unveiling the real active species and active states in these catalysts remains a challenge. The coexistence of metal ions in different chemical states and in different chemical environments, including disordered X-ray amorphous phases that all evolve under reaction conditions, hinders the application of common operando techniques.
View Article and Find Full Text PDFThe CO hydrogenation reaction over the Rh(111) and (211) surfaces has been investigated operando by X-ray photoelectron spectroscopy at a pressure of 150 mbar. Observations of the resting state of the catalyst give mechanistic insight into the selectivity of Rh for generating ethanol from CO hydrogenation. This study shows that the Rh(111) surface does not dissociate all CO molecules before hydrogenation of the O and C atoms, which allows methoxy and other both oxygenated and hydrogenated species to be visible in the photoelectron spectra.
View Article and Find Full Text PDFPerforming fundamental catalysis studies under realistic conditions is a key to further develop and increase the efficiency of industrial catalysts. X-ray photoelectron spectroscopy (XPS) experiments have been limited to pressures, and the relevance for industrial applications has been questioned. Herein, we report on the CO oxidation experiment on Pd(100) performed at a total pressure of 1 bar using XPS.
View Article and Find Full Text PDFIn this study, we have taken advantage of a pulsed CO electroreduction reaction (CORR) approach to tune the product distribution at industrially relevant current densities in a gas-fed flow cell. We compared the CORR selectivity of Cu catalysts subjected to either potentiostatic conditions (fixed applied potential of -0.7 V) or pulsed electrolysis conditions (1 s pulses at oxidative potentials ranging from = 0.
View Article and Find Full Text PDFUsing grazing incidence X-rays and X-ray photoelectron spectroscopy during the mass transfer limited catalytic oxidation of CO, the long-range surface structure of Pd(100) was investigated. Under the reaction conditions of 50:4 O to CO, 300 mbar pressure, and temperatures between 200 and 450 °C, the surface structure resulting from oxidation and the subsequent oxide reduction was elucidated. The reduction cycle was halted, and while under reaction conditions, angle-dependent X-ray photoelectron spectroscopy close to the critical angle of Pd and modeling of the data was performed.
View Article and Find Full Text PDFJ Phys Condens Matter
February 2021
Catalysts are materials that accelerate the rate of a desired chemical reaction. As such, they constitute an integral part in many applications ranging from the production of fine chemicals in chemical industry to exhaust gas treatment in vehicles. Accordingly, it is of utmost economic interest to improve catalyst efficiency and performance, which requires an understanding of the interplay between the catalyst structure, the gas phase and the catalytic activity under realistic reaction conditions at ambient pressures and elevated temperatures.
View Article and Find Full Text PDFJ Synchrotron Radiat
September 2018
High-energy surface X-ray diffraction (HESXRD) provides surface structural information with high temporal resolution, facilitating the understanding of the surface dynamics and structure of the active phase of catalytic surfaces. The surface structure detected during the reaction is sensitive to the composition of the gas phase close to the catalyst surface, and the catalytic activity of the sample itself may affect the surface structure, which in turn may complicate the assignment of the active phase. For this reason, planar laser-induced fluorescence (PLIF) and HESXRD have been combined during the oxidation of CO over a Pd(100) crystal.
View Article and Find Full Text PDFThe thermal reduction of cerium oxide nanostructures deposited on a rhodium(111) single crystal surface and the re-oxidation of the structures by exposure to CO2 were investigated. Two samples are compared: a rhodium surface covered to ≈60% by one to two O-Ce-O trilayer high islands and a surface covered to ≈65% by islands of four O-Ce-O trilayer thickness. Two main results stand out: (1) the thin islands reduce at a lower temperature (870-890 K) and very close to Ce2O3, while the thicker islands need higher temperature for reduction and only reduce to about CeO1.
View Article and Find Full Text PDFMotivated mainly by catalysis, gas-surface interaction between single crystal surfaces and molecules has been studied for decades. Most of these studies have been performed in well-controlled environments and have been instrumental for the present day understanding of catalysis, providing information on surface structures, adsorption sites, and adsorption and desorption energies relevant for catalysis. However, the approach has been criticized for being too far from a catalyst operating under industrial conditions at high temperatures and pressures.
View Article and Find Full Text PDFA simple experiment to characterize the gating properties of X-ray area detectors using pulsed X-ray sources is presented. For a number of time-resolved experiments the gating uniformity of area detectors is important. Relative gating delays between individual modules and readout chips of PILATUS2 series area X-ray detectors have been observed.
View Article and Find Full Text PDFNanoparticle sintering during catalytic reactions is a major cause for catalyst deactivation. Understanding its atomic-scale processes and finding strategies to reduce it is of paramount scientific and economic interest. Here, we report on the composition-dependent three-dimensional restructuring of epitaxial platinum-rhodium alloy nanoparticles on alumina during carbon monoxide oxidation at 550 K and near-atmospheric pressures employing in situ high-energy grazing incidence x-ray diffraction, online mass spectrometry and a combinatorial sample design.
View Article and Find Full Text PDFAlloy nanoparticles on oxide supports are widely used as heterogeneous catalysts in reactions involving oxygen. Here we discuss the oxidation behavior of Pd-Rh alloy nanoparticles on MgAl2O4(001) supports with a particle diameter from 6-11 nm. As an In situ tool, we employed high energy grazing incidence X-ray diffraction at a photon energy of 85 keV.
View Article and Find Full Text PDF