Publications by authors named "Uta Heiden"

Over the past decades, solar panels have been widely used to harvest solar energy owing to the decreased cost of silicon-based photovoltaic (PV) modules, and therefore it is essential to remotely map and monitor the presence of solar PV modules. Many studies have explored on PV module detection based on color aerial photography and manual photo interpretation. Imaging spectroscopy data are capable of providing detailed spectral information to identify the spectral features of PV, and thus potentially become a promising resource for automated and operational PV detection.

View Article and Find Full Text PDF

Over the past decades, enormous efforts have been made to improve the performance of linear or nonlinear mixing models for hyperspectral unmixing (HU), yet their ability to simultaneously generalize various spectral variabilities (SVs) and extract physically meaningful endmembers still remains limited due to the poor ability in data fitting and reconstruction and the sensitivity to various SVs. Inspired by the powerful learning ability of deep learning (DL), we attempt to develop a general DL approach for HU, by fully considering the properties of endmembers extracted from the hyperspectral imagery, called endmember-guided unmixing network (EGU-Net). Beyond the alone autoencoder-like architecture, EGU-Net is a two-stream Siamese deep network, which learns an additional network from the pure or nearly pure endmembers to correct the weights of another unmixing network by sharing network parameters and adding spectrally meaningful constraints (e.

View Article and Find Full Text PDF

Monitoring global biodiversity from space through remotely sensing geospatial patterns has high potential to add to our knowledge acquired by field observation. Although a framework of essential biodiversity variables (EBVs) is emerging for monitoring biodiversity, its poor alignment with remote sensing products hinders interpolation between field observations. This study compiles a comprehensive, prioritized list of remote sensing biodiversity products that can further improve the monitoring of geospatial biodiversity patterns, enhancing the EBV framework and its applicability.

View Article and Find Full Text PDF

Imaging spectrometry from aerial or spaceborne platforms, also known as hyperspectral remote sensing, provides dense sampled and fine structured spectral information for each image pixel, allowing the user to identify and characterize Earth surface materials such as minerals in rocks and soils, vegetation types and stress indicators, and water constituents. The recently launched DLR Earth Sensing Imaging Spectrometer (DESIS) installed on the International Space Station (ISS) closes the long-term gap of sparsely available spaceborne imaging spectrometry data and will be part of the upcoming fleet of such new instruments in orbit. DESIS measures in the spectral range from 400 and 1000 nm with a spectral sampling distance of 2.

View Article and Find Full Text PDF

High resolution imaging spectroscopy data have been recognised as a valuable data resource for augmenting detailed material inventories that serve as input for various urban applications. Image-specific urban spectral libraries are successfully used in urban imaging spectroscopy studies. However, the regional- and sensor-specific transferability of such libraries is limited due to the wide range of different surface materials.

View Article and Find Full Text PDF