MicroRNAs (miRNAs) are small noncoding regulatory RNAs that reduce stability and/or translation of fully or partially sequence-complementary target mRNAs. In order to identify miRNAs and to assess their expression patterns, we sequenced over 250 small RNA libraries from 26 different organ systems and cell types of human and rodents that were enriched in neuronal as well as normal and malignant hematopoietic cells and tissues. We present expression profiles derived from clone count data and provide computational tools for their analysis.
View Article and Find Full Text PDFRNA interference (RNAi) is a naturally occurring cellular defense mechanism against viral infections and transposon invasion. Short double-stranded RNA molecules, so-called small-interfering (si)RNAs, bind their complementary mRNA leading to the mRNA's degradation. During the past few years, RNAi has become a valuable tool for transient as well as stable repression of gene expression rendering the time-consuming production of knockout animals superfluous.
View Article and Find Full Text PDFThe nonreceptor protein spleen tyrosine kinase (Syk) is a key mediator of signal transduction in a variety of cell types, including B lymphocytes. We show that deregulated Syk activity allows growth factor-independent proliferation and transforms bone marrow-derived pre-B cells that are then able to induce leukemia in mice. Syk-transformed pre-B cells show a characteristic pattern of tyrosine phosphorylation, increased c-Myc expression, and defective differentiation.
View Article and Find Full Text PDFUstilago maydis is a ubiquitous pathogen of maize and a well-established model organism for the study of plant-microbe interactions. This basidiomycete fungus does not use aggressive virulence strategies to kill its host. U.
View Article and Find Full Text PDFIt is well established that polarized exocytosis is essential for fungal virulence. By contrast, the contribution of endocytosis is unknown. We made use of a temperature-sensitive mutant in the endosomal target soluble N-ethylmaleimide-sensitive factor attachment protein receptor Yup1 and demonstrate that endocytosis in Ustilago maydis is essential for the initial steps of pathogenic development, including pheromone perception and cell-cell fusion.
View Article and Find Full Text PDFAbdominal-type HoxA genes in combination with Meis1 are well-documented on-cogenes in various leukemias but it is unclear how they exert their transforming function. Here we used a system of conditional transformation by an inducible mixed lineage leukemia-eleven-nineteen leukemia (MLL-ENL) oncoprotein to overexpress Hoxa9 and Meis1 in primary hematopoietic cells. Arrays identified c-Myb and a c-Myb target (Gstm1) among the genes with the strongest response to Hoxa9/Meis1.
View Article and Find Full Text PDFTumor necrosis factor-related apoptosis-inducing ligand (TRAIL) might represent a future cytotoxic drug to treat cancer as it induces apoptosis in tumor cells without toxicity in animal trials. We recently described that in contrast to apoptosis, TRAIL mediates tumor cell survival and proliferation in certain tumor cells. Here we studied the effect of TRAIL on 18 cell lines and 53 primary leukemia cells and classified these tumor cells into four groups: TRAIL, anti-DR4 or anti-DR5 induced apoptosis in group A cells, whereas they had no effect on group 0 cells and mediated proliferation in group P cells.
View Article and Find Full Text PDFFungal pathogenicity often involves a yeast-to-hypha transition, but the structural basis for this dimorphism is largely unknown. Here we analyze the role of the cytoskeleton in early steps of pathogenic development in the corn pathogen Ustilago maydis. On the plant yeast-like cells recognize each other, undergo a cell cycle arrest, and form long conjugation hyphae, which fuse and give rise to infectious filaments.
View Article and Find Full Text PDFFive hydrophobin genes have been identified in the fungal corn pathogen Fusarium verticillioides. HYD1, HYD2, and HYD3 encode Class I hydrophobins. The predicted structures of Hyd1p and Hyd2p are 80% similar, while Hyd3p has an unusually small number of amino acids between the third and fourth cysteines.
View Article and Find Full Text PDFNucleic acid-based sequence-specific therapeutic intervention offers the potential for treatment of particular cancers without side effects. RNA interference (RNAi) induced by small interfering RNA (siRNA) (19-21 bp) is a normal cellular mechanism leading to highly specific and extraordinarily efficient degradation of the corresponding mRNA. The mechanism of RNAi as well as strategies for the design and delivery of siRNA are described.
View Article and Find Full Text PDFMLL fusion proteins are oncogenic transcription factors that are associated with aggressive lymphoid and myeloid leukemias. We constructed an inducible MLL fusion, MLL-ENL-ERtm, that rendered the transcriptional and transforming properties of MLL-ENL strictly dependent on the presence of 4-hydroxy-tamoxifen. MLL-ENL-ERtm-immortalized hematopoietic cells required 4-hydroxy-tamoxifen for continuous growth and differentiated terminally upon tamoxifen withdrawal.
View Article and Find Full Text PDFLeukemias and lymphomas are often characterized by non-random chromosomal translocations that, at the molecular level, induce the activation of specific oncogenes or create novel chimeric genes. They have frequently been regarded as optimal targets for gene-silencing approaches because of the large body of evidence that these single abnormalities directly initiate and maintain the malignant process. Herein, we discuss RNA interference (RNAi)-based approaches for targeting the fusion sites of chromosomal translocations as a future treatment option in leukemias and lymphomas.
View Article and Find Full Text PDFThe MLL gene at chromosome 11q23 is frequently rearranged in acute leukemia. Here we report the identification of a new MLL fusion partner in the case of an infant with AML-M4 and a t(11;17)(q23;q21) translocation. Fluorescence in situ hybridization (FISH) and RT-PCR analyses indicated a rearrangement of the MLL gene, but no fusion with previously identified MLL fusion partners at 17q, such as AF17 or MSF.
View Article and Find Full Text PDFShort 21-mer double-stranded RNA (dsRNA) molecules have recently been employed for the sequence-specific silencing of endogenous human genes. This mechanism, called RNA interference (RNAi), is extremely potent and requires only a few dsRNA molecules per cell to silence homologous gene mRNA expression. We used dsRNA targeting the M-BCR/ABL fusion site to kill leukemic cells with such a rearrangement.
View Article and Find Full Text PDF