Publications by authors named "Ut-Binh T Giang"

The metastatic potential of cancer cells is an elusive property that is indicative of the later stages of cancer progression. The ability to distinguish between poorly and highly metastatic cells is invaluable for understanding the basic biology of cancer and to develop more treatments. In this paper, we exploit a A375 melanoma cell line series (A375P, A375MA1, A375MA2) that vary in metastatic potential, to demonstrate an in vitro screening assay using polydimethylsiloxane (PDMS) microbubble well arrays that can distinguish these cell lines by their growth characteristics in including morphology, migratory potential, and clonogenic potential.

View Article and Find Full Text PDF

Microbubbles are spherical cavities formed in thermally cured polydimethylsiloxane (PDMS) using the gas expansion molding technique. Microbubble cavity arrays are generated by casting PDMS over a silicon wafer mold containing arrays of deep etched pits. To be useful in various high throughput cell culture and sorting applications it is imperative that uniform micron-sized cavities can be formed over large areas (in(2)).

View Article and Find Full Text PDF

The in vivo cellular microenvironment is regulated by a complex interplay of soluble factors and signaling molecules secreted by cells and it plays a critical role in the growth and development of normal and diseased tissues. In vitro systems that can recapitulate the microenvironment at the cellular level are needed to investigate the influence of autocrine signaling and extracellular matrix effects on tissue homeostasis, regeneration, disease development and progression. In this study, we report the use of microbubble technology as a means to culture cells in a controlled microenvironment in which cells can influence their function through autocrine signaling.

View Article and Find Full Text PDF

Multi-cellular tumor spheroids (MCTSs) have been established as a 3D physiologically relevant tumor model for drug testing in cancer research. However, it is difficult to control the MCTS testing parameters and the entire process is time-consuming and expensive. To overcome these limitations, we developed a simple microfluidic system using polydimethylsiloxane (PDMS) microbubbles to culture tumor spheroids under physiological flow.

View Article and Find Full Text PDF

We present a novel method to create cavities in PDMS that is simple and exhibits wide process latitude allowing control over the radius of curvature to form shallow concave pits or deep spherical cavities.

View Article and Find Full Text PDF