Climate change will bring the interaction of stresses such as increased temperature and drought under high [CO] conditions. This is likely to impact on crop growth and productivity. This study aimed to (i) determine the response of barley water relations to vegetative and anthesis drought periods under triple interaction conditions, (ii) test the possibility to prime barley plants for drought, and (iii) analyse the involvement of aquaporins in (i) and (ii).
View Article and Find Full Text PDFMany species of are important pathogens that cause plant diseases and postharvest rots. They lead to significant economic losses in agriculture and affect human and animal health due to their capacity to produce mycotoxins. Therefore, it is necessary to study the factors that can result in an increase in .
View Article and Find Full Text PDFViticulture is highly dependent on phytochemicals to maintain good vineyard health. However, to reduce their accumulation in the environment, green regulations are driving the development of eco-friendly strategies. In this respect, seaweeds have proven to be one of the marine resources with the highest potential as plant protective agents, representing an environmentally-friendly alternative approach for sustainable wine production.
View Article and Find Full Text PDFGrowth was not strictly linked to photosynthesis performance under salinity conditions in quinoa. Other key traits, which were varieties-specific, rather than photosynthesis explained better growth performance. Phenotyping for salinity stress tolerance in quinoa is of great interest to select traits contributing to overall salinity tolerance and to understand the response mechanisms to salinity at a whole plant level.
View Article and Find Full Text PDFSoybean ( L.) future response to elevated [CO] has been shown to differ when inoculated with strains isolated at ambient or elevated [CO]. Plants, inoculated with three strains isolated at different [CO], were grown in chambers at current and elevated [CO] (400 vs.
View Article and Find Full Text PDFThe response of plant species to external factors depends partly on the interaction with the environment and with the other species that coexist in the same ecosystem. Several studies have investigated the main traits that determine the competitive capacity of plant species, and although the relevance of the traits is not clear, traits both from belowground and aboveground have been observed. In this paper, we grew Trifolium pratense and Agrostis capillaris in intra- and interspecific competition, analyzing the photosynthetic metabolism and nitrogen uptake, among other variables.
View Article and Find Full Text PDFNitrogen is one of the main factors that affect plant growth and development. However, high nitrogen concentrations can inhibit both shoot and root growth, even though the processes involved in this inhibition are still unknown. The aim of this work was to identify the metabolic alterations that induce the inhibition of root growth caused by high nitrate supply, when the whole plant growth is also reduced.
View Article and Find Full Text PDFThe present study was focused on lettuce, a widely consumed leafy vegetable for the large number of healthy phenolic compounds. Two differently-pigmented lettuce cultivars, i.e.
View Article and Find Full Text PDFClimate change can have major consequences for grassland communities since the different species of the community utilize different mechanisms for adaptation to drought and elevated CO levels. In addition, contradictory data exist when the combined effects of elevated CO and drought are analyzed because the soil water content is not usually similar between CO concentrations. Thus, the objectives of this work have been to examine the effect of water stress on plant water relations in two grassland species (Trifolium pratense and Agrostis capillaris), analyzing the possible differences between the two species when soil water content is equal in all treatments, and to elucidate if development under elevated CO increases drought tolerance and if so, which are the underlying mechanisms.
View Article and Find Full Text PDFBoth salt stress and high CO level, besides influencing secondary metabolism, can affect oxidative status of plants mainly acting in an opposite way with salinity provoking oxidative stress and elevated CO alleviating it. The aim of the present work was to study the changes in the composition of phenolic acids and flavonoids as well as in the antioxidant activity in two differently pigmented lettuce cvs (green or red leaf) when submitted to salinity (200 mM NaCl) or elevated CO (700 ppm) or to their combination in order to evaluate how a future global change can affect lettuce quality. Following treatments, the red cv.
View Article and Find Full Text PDFDifferently colored lettuce (Lactuca sativa L.) cultivars (green, green/red, and red) were studied to correlate their phenolic composition with their antioxidant kinetic behavior. Electron paramagnetic resonance (EPR) was employed to monitor decay kinetics of 1,1-diphenyl-2-picrylhydrazyl (DPPH(•)), which allowed the identification of three differently paced antioxidants.
View Article and Find Full Text PDFThe objective of this study was to determine the response of barley's carbon isotope composition and other physiological parameters to the interaction of salt stress and elevated CO2 levels, and the usefulness of carbon isotope discrimination (Δ(13)C) as indicative of the functional performance of barley (Hordeum vulgare L.). Barley plants were grown under ambient (350 μmol mol(-1)) and elevated (700 μmol mol(-1)) CO2 conditions and subjected to salt stress (0, 80, 160, and 240 mM NaCl) for 14 days.
View Article and Find Full Text PDFAs a consequence of the increasing importance of vegetables in the human diet, there is an interest in enhancing both the productivity and quality of vegetables. A number of factors, including plant genotype and environmental growing conditions, can impact the production and quality of vegetables. The objective of this study was to determine whether elevated CO2, salinity, or high light treatments assayed individually, or salinity or high light in combination with elevated CO2, increased biomass production and antioxidant capacity in two lettuce cultivars.
View Article and Find Full Text PDFThe future environment may be altered by high concentrations of salt in the soil and elevated [CO(2)] in the atmosphere. These have opposite effects on photosynthesis. Generally, salt stress inhibits photosynthesis by stomatal and non-stomatal mechanisms; in contrast, elevated [CO(2)] stimulates photosynthesis by increasing CO(2) availability in the Rubisco carboxylating site and by reducing photorespiration.
View Article and Find Full Text PDFFuture environmental conditions will include elevated concentrations of salt in the soil and an elevated concentration of CO(2) in the atmosphere. Because these environmental changes will likely affect reactive oxygen species (ROS) formation and cellular antioxidant metabolism in opposite ways, we analyzed changes in cellular H(2)O(2) and non-enzymatic antioxidant metabolite [lipoic acid (LA), ascorbate (ASA), glutathione (GSH)] content induced by salt stress (0, 80, 160 or 240 mM NaCl) under ambient (350 micromol mol(-1)) or elevated (700 micromol mol(-1)) CO(2) concentrations in two barley cultivars (Hordeum vulgare L.) that differ in sensitivity to salinity (cv.
View Article and Find Full Text PDFFuture environmental conditions will include elevated concentrations of salt in the soils and elevated concentrations of CO(2) in the atmosphere. Soil salinization inhibits crop growth due to osmotic and ionic stress. However, plants possess salt tolerance mechanisms, such as osmotic and elastic adjustment, to maintain water status.
View Article and Find Full Text PDFChanges in antioxidant metabolism because of the effect of salinity stress (0, 80, 160 or 240 mM NaCl) on protective enzyme activities under ambient (350 micromol mol(-1)) and elevated (700 micromol mol(-1)) CO(2) concentrations were investigated in two barley cultivars (Hordeum vulgare L., cvs Alpha and Iranis). Electrolyte leakage, peroxidation, antioxidant enzyme activities [superoxide dismutase (SOD), EC 1.
View Article and Find Full Text PDF