Publications by authors named "Ustinov A"

Targeted delivery of chemotherapeutic agents is a well-established approach to cancer therapy. Antibody-drug conjugates (ADCs) typically carry toxic payloads attached to a tumor-associated antigen-targeting IgG antibody via an enzyme-cleavable linker that releases the drug inside the cell. Aptamers are a promising alternative to antibodies in terms of antigen targeting; however, their polynucleotide nature and smaller size result in a completely different PK/PD profile compared to an IgG.

View Article and Find Full Text PDF

Disordered thin films are a common choice of material for superconducting, high impedance circuits used in quantum information or particle detector physics. A wide selection of materials with different levels of granularity are available, but, despite low microwave losses being reported for some, the high degree of disorder always implies the presence of intrinsic defects. Prominently, quantum circuits are prone to interact with two-level systems (TLS), typically originating from solid state defects in the dielectric parts of the circuit, like surface oxides or tunneling barriers.

View Article and Find Full Text PDF

Amphipathic perylene derivatives are broad-spectrum antivirals against enveloped viruses that act as fusion inhibitors in a light-dependent manner. The compounds target the lipid bilayer of the viral envelope using the lipophilic perylene moiety and photogenerating singlet oxygen, thereby causing damage to unsaturated lipids. Previous studies show that variation of the polar part of the molecule is important for antiviral activity.

View Article and Find Full Text PDF

Perylenylethynyl derivatives have been recognized as broad-spectrum antivirals that target the lipid envelope of enveloped viruses. In this study, we present novel perylenylethynylphenols that exhibit nanomolar or submicromolar antiviral activity against Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) and feline infectious peritonitis virus (FIPV) in vitro. Perylenylethynylphenols incorporate into viral and cellular membranes and block the entry of the virus into the host cell.

View Article and Find Full Text PDF

A novel approach to surface modification was developed to improve the corrosion performance of biodegradable magnesium alloys. Additively manufactured magnesium samples and Mg-Mn-based magnesium alloys were used in this study. This method involves the combination of plasma electrolytic oxidation to create a porous ceramic-like matrix, followed by treatment with protective biocompatible agents.

View Article and Find Full Text PDF

The coronavirus disease 2019 (COVID-19) pandemic, caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), has prompted great interest in novel broad-spectrum antivirals, including perylene-related compounds. In the present study, we performed a structure-activity relationship analysis of a series of perylene derivatives, which comprised a large planar perylene residue, and structurally divergent polar groups connected to the perylene core by a rigid ethynyl or thiophene linker. Most of the tested compounds did not exhibit significant cytotoxicity towards multiple cell types susceptible to SARS-CoV-2 infection, and did not change the expressions of cellular stress-related genes under normal light conditions.

View Article and Find Full Text PDF

In this work, based on the multilevel approach, the features of the structure and properties of titanium alloy, formed during high-performance additive manufacturing by wire-feed electron beam technology, were studied. Methods of non-destructive X-ray control and tomography, along with optical and scanning electron microscopy, were used to study the structure at different scale levels of the sample material. The mechanical properties of the material under stress were revealed via the simultaneous observation of the peculiarities of deformation development, using a Vic 3D laser scanning unit.

View Article and Find Full Text PDF

This paper presents the results of uniaxial tensile tests on specimens of the hypoeutectic aluminum-silicon alloy A319. According to the results, the influence of surface treatment by pulsed electron beam on the mechanical properties of the material was determined. The peculiarities of deformation localization in the material caused by grinding of the surface layer material structure due to rapid crystallization during electron beam treatment were revealed.

View Article and Find Full Text PDF

The protective coating with a self-organized microtubular structure was formed using plasma electrolytic oxidation (PEO) on AlMg3 aluminum alloy in the tartrate-fluoride electrolyte. This protective layer was further modified using corrosion inhibitors of the azole group (1,2,4-triazole, benzotriazole) and polymer material (polyvinilidene fluoride, PVDF). X-ray diffraction analysis and scanning electron microscopy with energy dispersive spectroscopy were used to study the morphology and composition of the obtained oxide coatings.

View Article and Find Full Text PDF

A universal approach to the construction of antibody-drug conjugates (ADCs) has been developed. It relies on periodate oxidation of naturally present glycans of immunoglobulin G, followed by oxime ligation and, optionally, copper(I)-catalyzed alkyne-azide cycloaddition for conjugation with a toxic payload. The introduction of highly absorbing cyanine dyes into the linker allows for facile determination of the drug-antibody ratio.

View Article and Find Full Text PDF

The method of hybrid coating formation on the surface of a bioresorbable wrought magnesium alloy and magnesium obtained by additive technology was proposed. Plasma electrolytic oxidation (PEO) with subsequent treatment of the material using an organic biocompatible corrosion inhibitor and a bioresorbable polymer material was used to obtain the protective layers. The optimal method of surface treatment was suggested.

View Article and Find Full Text PDF

Fluorescent antibodies have proved to be an invaluable tool for molecular biology and diagnostics. They are routinely produced by modification of lysine residues, which leads to high heterogeneity. As such, their affinity may be compromised if the antigen-binding site is affected, the probability of which increases along with the degree of labeling.

View Article and Find Full Text PDF

In this work, the properties of the coatings formed on the Mg-Mn-Ce alloy by plasma electrolytic oxidation (PEO) in electrolytes containing halloysite nanotubes (HNTs) were investigated. The incorporation of halloysite nanotubes into the PEO coatings improved their mechanical characteristics, increased thickness, and corrosion resistance. The studied layers reduced corrosion current density by more than two times in comparison with the base PEO layer without HNTs (from 1.

View Article and Find Full Text PDF

Broad antiviral activity in vitro is known for many organic photosensitizers generating reactive oxygen species under irradiation with visible light. Low tissue penetration of visible light prevents further development of antiviral therapeutics based on these compounds. One possible solution to this problem is the development of photosensitizers with near-infrared absorption (NIR dyes).

View Article and Find Full Text PDF

Amphipathic nucleoside and non-nucleoside derivatives of pentacyclic aromatic hydrocarbon perylene are known as potent non-cytotoxic broad-spectrum antivirals. Here we report 3-methyl-5-(perylen-3-ylethynyl)-uracil-1-acetic acid and its amides, a new series of compounds based on a 5-(perylen-3-ylethynyl)-uracil scaffold. The compounds demonstrate pronounced in vitro activity against arthropod-borne viruses, namely tick-borne encephalitis virus (TBEV) and yellow fever virus (YFV), in plaque reduction assays with EC values below 1.

View Article and Find Full Text PDF

Nanocrystalline layer-structured monoclinic NaTiO is currently under consideration for usage in solid state electrolyte applications or electrochemical devices, including sodium-ion batteries, fuel cells, and sensors. Herein, a facile one-pot hydrothermal synthetic procedure is developed to prepare self-assembled moss-like hierarchical porous structure constructed by ultrathin NaTiO nanotubes with an outer diameter of 6-9 nm, a wall thickness of 2-3 nm, and a length of several hundred nanometers. The phase and chemical transformations, optoelectronic, conductive, and electrochemical properties of as-prepared hierarchically-organized NaTiO nanotubes have been studied.

View Article and Find Full Text PDF

Bioconjugation of antibodies with various payloads has diverse applications across various fields, including drug delivery and targeted imaging techniques. Fluorescent immunoconjugates provide a promising tool for cancer diagnostics due to their high brightness, specificity, stability and target affinity. Fluorescent antibodies are widely used in flow cytometry for fast and sensitive identification and collection of cells expressing the target surface antigen.

View Article and Find Full Text PDF
Article Synopsis
  • The document discusses the antiviral effects of various photosensitizers and the challenges in understanding their exact mechanisms of action due to the empirical nature of many studies.
  • A key focus is on the role of singlet oxygen (O), which can damage the viral envelope's lipids, potentially inhibiting the virus's ability to infect host cells.
  • The review aims to highlight promising antiviral photosensitizers that can bind to lipid bilayers and summarizes recent findings to encourage further research in this area.
View Article and Find Full Text PDF

Nickel- and zinc-doped TiO(B) nanobelts were synthesized using a hydrothermal technique. It was found that the incorporation of 5 at.% Ni into bronze TiO expanded the unit cell by 4%.

View Article and Find Full Text PDF

We propose a method for the design of metalenses generating and focusing so-called vector Lissajous beams (VLBs), a generalization of cylindrical vector beams (CVBs) in the form of vector beams whose polarization vector is defined by two orders (p, q). The designed metalenses consist of subwavelength gratings performing the polarization transformation of the incident linearly polarized laser beams and a sublinearly chirped lens term for the realization of the beam focusing. The possibility of using VLBs for the realization of laser beams with a complex Poynting vector is theoretically shown.

View Article and Find Full Text PDF

The critical step for future quantum industry demands realization of efficient information exchange between different-platform hybrid systems that can harvest advantages of distinct platforms. The major restraining factor for the progress in certain hybrids is weak coupling strength between the elemental particles. In particular, this restriction impedes a promising field of hybrid magnonics.

View Article and Find Full Text PDF

We demonstrate nonequilibrium steady-state photon transport through a chain of five coupled artificial atoms simulating the driven-dissipative Bose-Hubbard model. Using transmission spectroscopy, we show that the system retains many-particle coherence despite being coupled strongly to two open spaces. We find that cross-Kerr interaction between system states allows high-contrast spectroscopic visualization of the emergent energy bands.

View Article and Find Full Text PDF

As quantum coherence times of superconducting circuits have increased from nanoseconds to hundreds of microseconds, they are currently one of the leading platforms for quantum information processing. However, coherence needs to further improve by orders of magnitude to reduce the prohibitive hardware overhead of current error correction schemes. Reaching this goal hinges on reducing the density of broken Cooper pairs, so-called quasiparticles.

View Article and Find Full Text PDF

Optical vortex (OV) beams are widely used for the generation of light fields with transverse energy flow inducing orbital motion of the nano- and microparticles in the transverse plane. Here, we present some new modifications of OV beams with autofocusing properties for shaping complex transverse energy flow distributions varying in space. The angular component of the complex amplitude of these beams is defined by the superpositions of OV beams with different topological charges.

View Article and Find Full Text PDF

In this Letter, we report on the circular anisotropy of third-harmonic (TH) generation in an array of silicon nanowires (SiNWs) of approximately 100 nm in diameter tilted to the crystalline silicon substrate at an angle of 45°. Numerical simulations of the scattering at the fundamental and TH frequencies of circularly polarized light by a single SiNW and an ansatz structure composed of 13 SiNWs used as a geometrical approximation of the real SiNW array indicate asymmetric scattering diagrams, which is a manifestation of the photonic spin Hall effect mediated by the synthetic gauge field arising due to the special guided-like mode structure in each SiNW. Despite strong light scattering in the SiNW array, the experimentally measured TH signal demonstrated significant dependence on the polarization state of incident radiation and the SiNW array spacial orientation in regard to the wave vector direction.

View Article and Find Full Text PDF