Environ Toxicol Pharmacol
June 2024
Malaria represents the greatest global health burden among all parasitic diseases, with drug resistance representing the primary obstacle to control efforts. Sodium metavanadate (NaVO) exhibits antimalarial activity against the Plasmodium yoelii yoelii (Pyy), yet its precise antimalarial mechanism remains elusive. This study aimed to assess the antimalarial potential of NaVO, evaluate its genotoxicity, and determine the production of reactive oxygen and nitrogen species (ROS/RNS) in Pyy.
View Article and Find Full Text PDFMalaria is a potentially mortal disease caused by parasites of the genus Plasmodium spp. It has a wide distribution in the world and unfortunately there are several factors that make its control difficult; among which the development of pharmacological resistance to the different drugs used to treat this disease stands out, which makes it necessary to design new compounds that have an antimalarial effect. Previous studies have shown that vanadium has a broad antiparasitic spectrum and is also safe for the host, so the objective of this research was to evaluate the antimalarial potential of sodium metavanadate (SM) and to analyze the ultrastructural changes in parasites exposed.
View Article and Find Full Text PDFInt J Environ Res Public Health
August 2021
Materials (Basel)
June 2021
Reconstruction of bile ducts damaged remains a vexing medical problem. Surgeons have few options when it comes to a long segment reconstruction of the bile duct. Biological scaffolds of decellularized biliary origin may offer an approach to support the replace of bile ducts.
View Article and Find Full Text PDFAir pollution is a worldwide public health issue and it is associated with millions of premature deaths due to cancer, thrombosis, and pulmonary and cardiovascular diseases. Thrombosis is the excessive clotting that blocks a blood vessel, and its etiology is multifactorial. In recent years, growing evidence has linked air pollution, especially particulate matter (PM) and metals, to the development of thrombosis.
View Article and Find Full Text PDFThe Non-Ciliated Bronchiolar Cell (NCBC) is responsible for the defense and maintenance of the bronchiolar epithelium. Several cellular defense mechanisms have been associated with an increase in the secretion of CC16 and changes in the phenotype of the cell; these mechanisms could be linked to tolerance to the damage due to exposure to inhaled Particulate Matter (PM) of the epithelium. These defense mechanisms have not been sufficiently explored.
View Article and Find Full Text PDFThe thymus is a vital immune system organ wherein selection of T-lymphocytes occurs in a process regulated by dendritic and epithelial thymic cells. Previously, we have reported that in a mouse model of vanadium inhalation, a decrease in CD11c dendritic cells was observed. In the present study, we report on a thymic cortex-medulla distribution distortion in these hosts due to apparent effects of the inhaled vanadium on cytokeratin-5 (K5) epithelial cells in the same mouse model - after 1, 2, and 4 weeks of exposure - by immunohistochemistry.
View Article and Find Full Text PDFThere are evidences of environmental pollution and health effects. Metals are pollutants implicated in systemic toxicity. One of the least studied effects, but which is currently becoming more important, is the effect of metals on glycemic control.
View Article and Find Full Text PDFLangerhans cells are dendritic leucocytes which reside mainly within stratified squamous epithelia of skin and mucosa. Their visualization requires the use of ATPase histochemistry, electron microscopy for identifying the unique trilaminar cytoplasmic organelles (the Langerhans cell granules or Birbeck granules), and the expression of major histocompatibility complex class II molecules. Following uptake of antigen, Langerhans cells migrate via the afferent lymphatics to the lymph nodes and undergo differentiation from an antigen-processing cell to an antigen-presenting cell.
View Article and Find Full Text PDF