The development of nanofibers with incorporated biologically active molecules with a targeted mode of action is a current research trend. Potential materials for the development of such systems include poly(vinyl alcohol) (PVA) and chitosan (CS) nanofibers, which are traditionally fabricated by the electrospinning of aqueous solutions of these polymers with acetic acid. To improve drug integration, ethanol was added to the binary-solvent system.
View Article and Find Full Text PDFDehydroepiandrosterone and its sulfate are the most abundant steroids in humans. The metabolism of dehydroepiandrosterone can differ significantly depending on the organ or tissue and the subtype of steroid receptors expressed in it. For dehydroepiandrosterone, as a precursor of all steroid hormones, intracrine hormonal activity is inherent.
View Article and Find Full Text PDFTissue adhesion of hydrogels plays an important role in wound healing, which can improve the efficiency of wound treatment, stop bleeding, facilitate tissue growth and wound closure. However, most non-covalent crosslinked hydrogels have weak tissue adhesion and rheological properties. Furthermore, it remains a challenge to synthesize a fully physically crosslinked hydrogel with good rheological properties without compromising its tissue adhesion strength.
View Article and Find Full Text PDFTo enhance the ecological properties of polyvinyl chloride (PVC) products, the fabrication of PVC-based composites using biofillers with acceptable performance characteristics could be considered. In this work, plant-filled PVC-based composite materials were fabricated and their optical, structural, thermal, and mechanical properties, depending on the nature of the filler, were studied. Spruce flour, birch flour, and rice husk were used as fillers.
View Article and Find Full Text PDFIn order to evaluate the role of substituents at 3-C and 17-C in the cytotoxic and cytoprotective actions of DHEA and 5-AED molecules, their derivatives were synthesized by esterification using the corresponding acid anhydrides or acid chlorides. As a result, seven compounds were obtained: four DHEA derivatives (DHEA 3-propionate, DHEA 3-butanoate, DHEA 3-acetate, DHEA 3-methylsulfonate) and three 5-AED derivatives (5-AED 3-butanoate, 5-AED 3,17-dipropionate, 5-AED 3,17-dibutanoate). All of these compounds showed micromolar cytotoxic activity toward HeLa and K562 human cancer cells.
View Article and Find Full Text PDFThis study presents, for the first time, a comprehensive investigation of the influence of pre- and post-fabrication parameters for the electroactive properties of electrospun chitosan/PVA-based micro- and nanofibers. Chitosan/PVA fibers were fabricated using electrospinning, characterized, and tested as electroactive materials. Solutions with different acetic acid contents (50, 60, 70, and 80 %) were used, and the rheological properties of the solutions were analyzed.
View Article and Find Full Text PDFThe properties of poly(3-hydroxybutyrate--3-hydroxyhexanoate) P(3HB--3HHx) copolymers with different ratios of monomers synthesized by the wild-type strain B-10646 on sugars, and an industrial sample from Kaneka synthesized by the recombinant strain NSDG-ΔfadB1 on soybean oil, were studied in a comparative aspect and in relation to poly(3-hydroxybutyrate) P(3HB). The copolymer samples, regardless of the synthesis conditions or the ratio of monomers, had reduced values of crystallinity degree (50-60%) and weight average molecular weight (415-520 kDa), and increased values of polydispersity (2.8-4.
View Article and Find Full Text PDFChitosan/PVA nanofibrous electroresponsive soft actuators were successfully obtained using an electrospinning process, which showed fast speed displacement under an acidic environment. Chitosan/PVA nanofibers were prepared and characterized, and their electroactive response was tested. Chitosan/PVA nanofibers were electrospun from a chitosan/PVA solution at different chitosan contents (2.
View Article and Find Full Text PDFHydrogel materials are one of the most versatile representatives of biomaterials. Their widespread use in medical practice is due to their similarity to native biostructures regarding relevant properties. This article discusses the synthesis of hydrogels based on a plasma-substituting solution and modified tannin, carried out by direct mixing of the two solutions and brief heating.
View Article and Find Full Text PDFWound healing is a complex process of overlapping phases with the primary aim of the creation of new tissues and restoring their anatomical functions. Wound dressings are fabricated to protect the wound and accelerate the healing process. Biomaterials used to design dressing of wounds could be natural or synthetic as well as the combination of both materials.
View Article and Find Full Text PDFThe development of fast, cheap and reliable methods to determine seroconversion against infectious agents is of great practical importance. In the context of the COVID-19 pandemic, an important issue is to study the rate of formation of the immune layer in the population of different regions, as well as the study of the formation of post-vaccination immunity in individuals after vaccination. Currently, the main method for this kind of research is enzyme immunoassay (ELISA, enzyme-linked immunosorbent assay).
View Article and Find Full Text PDFOptimizing the properties of electrospun polymer-perovskite nanofibers is considered essential for improving the performance of flexible optoelectronic devices. Here, the influence of electrospinning setup parameters (i.e.
View Article and Find Full Text PDFHydrogels have become an essential class among all biomaterials. The specialized biomaterials are highly valued in the field of biomedical applications. One of the problems in wound management is local microelement deficiency associated with extensive wound lesions.
View Article and Find Full Text PDFWound management remains a challenging issue around the world, although a lot of wound dressing materials have been produced for the treatment of chronic and acute wounds. Wound healing is a highly dynamic and complex regulatory process that involves four principal integrated phases, including hemostasis, inflammation, proliferation, and remodeling. Chronic non-healing wounds are wounds that heal significantly more slowly, fail to progress to all the phases of the normal wound healing process, and are usually stalled at the inflammatory phase.
View Article and Find Full Text PDFRecently, hydrogels based on natural water-soluble polysaccharides have attracted more and more attention due to their favorable characteristics. The high water-holding capacity, lack of toxicity, and biodegradability of such hydrogels make it possible to develop new materials on their basis for biotechnological, biomedical, pharmacological, and medical purposes. Sodium alginate is a non-toxic natural polysaccharide found in marine algae.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
September 2022
Nowadays, plastic pollution attracts much attention both from society and scientists. The plastic pollution impact on the environment and human health requires assessment urgently, especially through experimental studies. However, such studies are still scarce because of the lack of standard methods for assessing their effects on living organisms.
View Article and Find Full Text PDFA large number of different skin diseases such as hits, acute, and chronic wounds dictate the search for alternative and effective treatment options. The wound healing process requires a complex approach, the key step of which is the choice of a dressing with controlled properties. Hydrogel-based scaffolds can serve as a unique class of wound dressings.
View Article and Find Full Text PDFBacterial infections have accompanied humanity throughout its history and became vitally important in the pandemic area. The most pathogenic bacteria are multidrug-resistant strains, which have become widespread due to their natural biological response to the use of antibiotics, including uncontrolled use. The current challenge is finding highly effective antibacterial agents of natural origin, which, however, have low solubility and consequently poor bioavailability.
View Article and Find Full Text PDFNanofiber fabrication is attracting great attention from scientists and technologists due to its applications in many fields of life. In order to design a nanosized polymer-based drug delivery system, we studied the conditions for the fabrication of electrospun nanofibers from poly (vinyl alcohol) (PVA) and chitosan (CS), which are well-known as biocompatible, biodegradable and non-toxic polymers that are widely used in the medical field. Aiming to develop nanofibers that can directly target diseased cells for treatment, such as cancerous cells, the ideal choice would be a system that contains the highest CS content as well as high quality fibers.
View Article and Find Full Text PDFNowadays, there is a widespread usage of sodium periodate as an oxidant for synthesizing gelatin-tannin hydrogels. The impact of iodine compounds could have a harmful effect on human health. The study focuses on the proposal of alternative oxidizing systems for tannin oxidation.
View Article and Find Full Text PDFDiflunisal is a well-known drug for the treatment of rheumatoid arthritis, osteoarthritis, primary dysmenorrhea, and colon cancer. This molecule belongs to the group of nonsteroidal anti-inflammatory drugs (NSAID) and thus possesses serious side effects such as cardiovascular diseases risk development, renal injury, and hepatic reactions. The last clinical data demonstrated that diflunisal is one of the recognized drugs for the treatment of cardiac amyloidosis and possesses a survival benefit similar to that of clinically approved tafamidis.
View Article and Find Full Text PDFIn this work, polyvinyl chloride (PVC)/clay nanofiber composites with various contents were fabricated by the electrospinning process. The morphology, porosity, density, and mechanical properties of the nanofiber mats were investigated. In addition, PVC/clay nanofiber mats were characterized by Fourier transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analysis.
View Article and Find Full Text PDFTopography-dependent tuning of water wettability was achieved on a stainless steel surface textured by nanosecond-laser pulses at different laser fluences, with the minimal contribution of the surface chemical modification. Such differently-wet neighboring surface spots were demonstrated to drive an autonomous directional water flow. A series of elementary microfluidic devices based on the spatial wetting gradients were designed and tested as building blocks of "green", energy-saving autonomous microfluidic circuits.
View Article and Find Full Text PDFUltrafast heating of photoionized free electrons by high-numerical-aperture (0.25-0.65) focused visible-range ultrashort laser pulses provides their resonant impact trapping into intra-gap electronic states of point defect centers in a natural IaA/B diamond with a high concentration of poorly aggregated nitrogen impurity atoms.
View Article and Find Full Text PDF