Due to the developing resistance and intolerance to antiretroviral drugs, there is an urgent demand for alternative agents that can suppress the viral load in people living with human immunodeficiency virus (HIV). Recently, there has been increased interest in agents of marine origin such as, in particular, fucoidans to suppress HIV replication. In the present study, the anti-HIV-1 activity of fucoidans from the brown algae , , , , , and was studied in vitro.
View Article and Find Full Text PDFSulfated polysaccharides of brown algae, fucoidans, are known for their anticoagulant properties, similar to animal heparin. Their complex and irregular structure is the main bottleneck in standardization and in defining the relationship between their structure and bioactivity. Fucoidan-active enzymes can be effective tools to overcome these problems.
View Article and Find Full Text PDFThis work reports the detailed structure of fucoidan from (2SmF2) and its ability to potentiate the inhibitory effect of glycolysis inhibitor 2-deoxy-d-glucose (2-DG). 2SmF2 was shown to be sulfated and acetylated galactofucan containing a main chain of alternating residues of 1,3- and 1,4-linked α-l-fucopyranose, fucose fragments with monotonous 1,3- and 1,4-type linkages (DP up to 3), α-d-Gal-(1→3)-α-L-Fuc disaccharides, and 1,3,4- and 1,2,4-linked fucose branching points. The sulfate groups were found at positions 2 and 4 of fucose and galactose residues.
View Article and Find Full Text PDFMelanoma is the most aggressive and treatment-resistant form of skin cancer. It is phenotypically characterized by aerobic glycolysis that provides higher proliferative rates and resistance to cell death. The glycolysis regulation in melanoma cells by means of effective metabolic modifiers represents a promising therapeutic opportunity.
View Article and Find Full Text PDFCancer is one of the main causes of human mortality worldwide. Despite the advances in the diagnostics, surgery, radiotherapy, and chemotherapy, the search for more effective treatment regimens and drug combinations are relevant. This work aimed to assess the radiomodifying effect and molecular mechanism of action of fucoidan from the brown alga (ScF) and product of its autohydrolysis (ScF_AH) in combination with pacificusoside D from the starfish (SpD) on the model of viability and invasion of three-dimension (3D) human melanoma cells SK-MEL-2.
View Article and Find Full Text PDFPolysaccharides' derivatives are promising biologically active compounds for biotechnology, nutrition, industries, and are becoming increasingly important in medicine and pharmacy. Laminaran from brown alga Saccharina cichorioides (ScL) was chemically modified to obtain the carboxymethylated derivative (ScLCM) with improved structure and bioactivity. ScLCM was identified as (1 → 3)-β-D-glucan with -CH-COOH groups at some positions 2, 4, and 6 of glucose residues.
View Article and Find Full Text PDFSix fucoidan fractions were isolated from the brown alga Alaria angusta. Structures of enzymatic hydrolysis products of the fraction 1AaF2 (Fuc:Gal ~ 1:1; 33 % of sulfates) by fucanase from Wenyingzhuangia fucanilytica were studied by chemical and instrumental (NMR spectroscopy and mass-spectrometry) methods. It was shown that 1AaF2 consisted of two structurally different fucoidans: a sulfated 1,3;1,4-α-L-fucan and an enzyme-resistant sulfated and acetylated complex fucogalactan (Fuc:Gal ~ 1:2; 19 % of sulfates) 1AaF2_HMP containing extended 1,3-linked fucose and 1,3/1,4-linked galactose fragments (up to 5 residues).
View Article and Find Full Text PDFThe fucoidan SdeF was isolated from brown alga Saccharina dentigera. The structure of the obtained polysaccharide was studied by chemical methods, NMR spectroscopy of the fully and partially desulfated derivatives, and mass spectrometry of the fucoidan fragments, labeled with O. The SdeF was shown to be sulfated (40%) 1,3-linked α-L-fucan, with branches at C2.
View Article and Find Full Text PDFColorectal cancer is one of the most frequent types of malignancy in the world. The search for new approaches of increasing the efficacy of cancer therapy is relevant. This work was aimed to study individual, combined anticancer effects, and molecular mechanism of action of sulfated laminaran AaLs of the brown alga and protolinckiosides A (PL1), B (PL2), and linckoside L1 (L1) of the starfish using a 3D cell culture model.
View Article and Find Full Text PDFFucoidans are biologically active sulfated polysaccharides of brown algae. They have a great structural diversity and a wide spectrum of biological activity. This review is intended to outline what is currently known about the structures of fucoidans and their radioprotective effect.
View Article and Find Full Text PDFThis study was aimed to determine the efficacy of combination of fucoidan from the brown algae Fucus evanescens (FeF) or its derivatives with thornasteroside A (ThA) or asteropsiside A (AsA) from the starfish Asteropsis carinifera in combating human melanoma cells. In vitro MTS and soft agar methods were performed to determine effect of FeF, its derivatives, ThA, AsA or their combination on proliferation and colony formation of SK-MEL-28 cells in 2D and 3D culture. Desulfation of FeF, but not deacetylation, led decreasing of its Mw and anti-proliferative activity.
View Article and Find Full Text PDFThe aim of this study was to establish the fine structure of fucoidan from Sargassum oligocystum and to study the radiosensitizing effect of fucoidans from three algae of genus Sargassum (S. oligocystum, S. duplicatum, and S.
View Article and Find Full Text PDFLaminarans are currently the focus of attention in regard to the selection of prospective agents for the prevention and treatment of cancer. Laminaran from Saccharina cichorioides was aminated to heighten anticancer and radiosensitizing activities and elucidate its molecular mode of action. Aminated laminaran, ScLNH, was identified as 1,3-β-d-glucan with -CH-CH(OH)-CH-NH group at the C6 of branches.
View Article and Find Full Text PDFPolysaccharide fractions of alginate, laminarans and fucoidans were obtained from the brown alga Tauya basicrassa. Yields of alginate and laminarans were large (19.7 % and 5.
View Article and Find Full Text PDFGenomic analysis of the marine bacterium Wenyingzhuangia fucanilytica CZ1127 revealed the presence of four fucoidanase genes fwf1, fwf2, fwf3, fwf4 that belonged to the glycoside hydrolase family 107 (GH107, CAZy), which is located in one gene cluster putatively involved in fucoidan catabolism. Genes encoding two fucoidanases fwf1 and fwf2 were cloned, and the proteins FWf1 and FWf2 were produced in Escherichia coli cells. The recombinant fucoidanases were purified and the biochemical properties of these enzymes were studied.
View Article and Find Full Text PDFIn this report, polysaccharides - alginate, fucoidan, laminaran - were isolated from marine algae Saccharina cichorioides and Fucus evanescens and their activity as a reducing and stabilizing agents in the biogenic synthesis of silver nanoparticles was evaluated. The cytotoxic and antibacterial properties of obtained nanoparticles were also assessed. It was found that all tested polysaccharides could be used as a reducing agent; however, their catalytic activities varied significantly in the following range alginate < fucoidan < laminaran.
View Article and Find Full Text PDFThe laminarans are biologically active water-soluble polysaccharide (1,3;1,6-β-D-glucans) of brown algae. These polysaccharides are an attractive object for research due to its relatively simple structure, low toxicity, and various biological effects. 1,3-β-D-glucanases are an effective tool for studying the structure of laminarans, and can also be used to obtain new biologically active derivatives.
View Article and Find Full Text PDFThe sulfated α-l-fucans ScF and LlF were obtained from brown algae of the Laminariaceae family (Saccharina cichorioides and Laminaria longipes). According to spectroscopy NMR, the LlF fucan predominantly contained the →3)-α-l-Fucp-(2SO-)-(1→4)-α-l-Fucp-(1→2)-α-l-Fucp-(4SO-)-(1→ repeating units, with small amounts of disaccharide 1,4-linked fragments and 3-sulfated fucose residues. Mass spectrometric analysis revealed the presence of the following fragments in the fucan structure: α-l-Fucp-(2SO-)-(1→4)-α-l-Fucp-(2SO-)-(1→3)-α-l-Fucp-(4SO-); α-l-Fucp-(2,4SO-)-(1→3)-α-l-Fucp-(1→3)-α-l-Fucp-(4SO-); α-l-Fucp-(2SO-)-(1→2)-α-l-Fucp; α-l-Fucp-(2SO-)-(1→2)-α-l-Fucp-(4SO-); α-l-Fucp-(2SO-)-(1→3)-α-l-Fucp; α-l-Fucp-(2,4SO-)-(1→3)-α-l-Fucp; α-l-Fucp-(4SO-)-(1→4)-α-l-Fucp; and α-l-Fucp-(4SO-)-(1→4)-α-l-Fucp-(2SO-).
View Article and Find Full Text PDFThe laminarans are neutral water-soluble β-D-glucans of brown algae possessing potent immunomodulating, radioprotective, and anticancer activities. The aim of the present study was to investigate in vitro anticancer, radioprotective, and radiosensitizing activities of laminaran from brown alga Dictyota dichotoma and its sulfated derivative. The native and sulfated laminarans by themselves at non-toxic doses possessed significant anticancer activity against melanoma cells.
View Article and Find Full Text PDFFucoidans are valuable biologically active polysaccharides of brown algae. The aim of this study was to investigate the structure of fucoidan from Sargassum feldmannii and the anticancer effects of native and modified polysaccharides from S. feldmannii and S.
View Article and Find Full Text PDFIn the present study, three sulfated polysaccharides, two fractions of fucosylated chondroitin sulfates, and one sulfated fucan were isolated from the body wall of the Vietnamese sea cucumber Stichopus variegatus. The structure of the sulfated fucan fraction SvF3 from S. variegatus was investigated for the first time.
View Article and Find Full Text PDFThe sulfated and acetylated fucoidan fraction, containing fucose, galactose, mannose, glucose and uronic acid residues, was isolated from the brown alga Padina boryana. The structure of galactofucan part was studied after different modifications by NMR spectroscopy and mass spectrometry. It was shown that galactofucan contained the main chain of alternating 1,4-linked α-l-fucopyranose and 1,3-linked β-d-Galactopyranose.
View Article and Find Full Text PDFThe laminaran DdL and fucoidan DdF were obtained from the brown alga Dictyota dichotoma. DdF was a sulfated (28.9%) and acetylated heteropolysaccharide containing fucose, galactose, mannose and glucose (57.
View Article and Find Full Text PDFThe laminaran SdL and fucoidan SdF were isolated from brown algae Sargassum duplicatum. SdL was 1,3;1,6-β-d-glucan (1,3:1,6=6:1) with a main chain, represented by 1,3-linked glucose residues, due to NMR spectroscopy data. Single glucose residues could form branches at C6.
View Article and Find Full Text PDF