Publications by authors named "Usha Thekkedath"

Article Synopsis
  • * The Pediatric Device Consortia (PDC) aims to conduct a scoping review to identify barriers and facilitators for clinical research infrastructure in pediatric medical devices by analyzing relevant healthcare literature across multiple databases.
  • * The study will include various published research types focused on pediatric populations, utilizing software for data management, with findings intended for dissemination through academic publications and conferences.
View Article and Find Full Text PDF

Background & Objectives: The oropharyngeal (OP) and nasopharyngeal (NP) swab samples are the most recommended clinical specimens for detecting SARS-CoV-2 in an individual through the quantitative real-time reverse-transcriptase-polymerase chain reaction (rRT-PCR) method. The primary objective of this study was to compare the performance of NP and OP swabs for the diagnosis of COVID-19 among 2250 concomitant samples (1125 NP + 1125 OP) using rRT-PCR test.

Methods: This study was conducted at a tertiary care hospital in southern India.

View Article and Find Full Text PDF

Objective: The purpose of this report is to provide insight from pediatric stakeholders with a shared desire to facilitate a revision of the current United States regulatory pathways for the development of pediatric healthcare devices.

Methods: On August 5, 2020, a group of innovators, engineers, professors and clinicians met to discuss challenges and opportunities for the development of new medical devices for pediatric health and the importance of creating a regulatory environment that encourages and accelerates the research and development of such devices. On January 6, 2021, this group joined regulatory experts at a follow-up meeting.

View Article and Find Full Text PDF

Autologous cell transplantation holds enormous promise to restore organ and tissue functions in the treatment of various pathologies including endocrine, cardiovascular, and neurological diseases among others. Even though immune rejection is circumvented with autologous transplantation, clinical adoption remains limited due to poor cell retention and survival. Cell transplant success requires homing to vascularized environment, cell engraftment and importantly, maintenance of inherent cell function.

View Article and Find Full Text PDF

Cell-based therapy is emerging as a promising strategy for treating a wide range of human diseases, such as diabetes, blood disorders, acute liver failure, spinal cord injury, and several types of cancer. Pancreatic islets, blood cells, hepatocytes, and stem cells are among the many cell types currently used for this strategy. The encapsulation of these "therapeutic" cells is under intense investigation to not only prevent immune rejection but also provide a controlled and supportive environment so they can function effectively.

View Article and Find Full Text PDF

Cell transplantation in bioengineered scaffolds and encapsulation systems has shown great promise in regenerative medicine. Depending on the site of implantation, type of cells and their expected function, these systems are designed to provide cells with a physiological-like environment while providing mechanical support and promoting long-term viability and function of the graft. A minimally invasive 3D printed system termed neovascularized implantable cell homing and encapsulation (NICHE) was developed in polylactic acid for subcutaneous transplantation of endocrine cells, including pancreatic islets.

View Article and Find Full Text PDF

Transplantation of pancreatic islets or stem cell derived insulin secreting cells is an attractive treatment strategy for diabetes. However, islet transplantation is associated with several challenges including function-loss associated with dispersion and limited vascularization as well as the need for continuous immunosuppression. To overcome these limitations, here we present a novel 3D printed and functionalized encapsulation system for subcutaneous engraftment of islets or islet like cells.

View Article and Find Full Text PDF

In numerous pathologies, implantable drug delivery devices provide advantages over conventional oral or parenteral approaches. Based on the site of implantation and release characteristics, implants can afford either systemic delivery or local administration, whereby the drug is delivered at or near the site of intended action. Unfortunately, current implantable drug delivery systems provide limited options for intervention in the case of an adverse reaction to the drug or the need for dosage adjustment.

View Article and Find Full Text PDF

Transplantation is often the only choice many patients have when suffering from end-stage organ failure. Although the quality of life improves after transplantation, challenges, such as organ shortages, necessary immunosuppression with associated complications, and chronic graft rejection, limit its wide clinical application. Nanotechnology has emerged in the past 2 decades as a field with the potential to satisfy clinical needs in the area of targeted and sustained drug delivery, noninvasive imaging, and tissue engineering.

View Article and Find Full Text PDF

Diabetes is one of the most prevalent, costly, and debilitating diseases in the world. Pancreas and islet transplants have shown success in re-establishing glucose control and reversing diabetic complications. However, both are limited by donor availability, need for continuous immunosuppression, loss of transplanted tissue due to dispersion, and lack of vascularization.

View Article and Find Full Text PDF
Article Synopsis
  • Hemostatic dysfunction is common in patients with uremia, and it is believed to be caused by multiple factors, including elevated levels of fibrinogen fragments (FF) that may contribute to this issue.
  • Analysis revealed that uremic patients have significantly higher FF levels compared to healthy individuals, which decrease notably after hemodialysis (HD).
  • FF from uremic plasma was shown to inhibit platelet function by reducing GP IIb-IIIa receptor expression and overall platelet aggregation.
View Article and Find Full Text PDF