Publications by authors named "Usha Narayanan"

Background: In the progression towards diabetes, glucolipotoxicity is one of the main causes of pancreatic beta cell pathology. The aim of this study was to examine the in vitro effects of chronic glucolipotoxic conditions on cellular responses in pancreatic islets, including glucose and fat metabolism, Calcium mobilization, insulin secretion and insulin content.

Results: Exposure of islets to chronic glucolipotoxic conditions decreased glucose stimulated insulin secretion in vitro.

View Article and Find Full Text PDF

MLN4924 is an investigational small-molecule inhibitor of the NEDD8-activating enzyme (NAE) in phase I clinical trials. NAE inhibition prevents the ubiquitination and proteasomal degradation of substrates for cullin-RING ubiquitin E3 ligases that support cancer pathophysiology, but the genetic determinants conferring sensitivity to NAE inhibition are unknown. To address this gap in knowledge, we conducted a genome-wide siRNA screen to identify genes and pathways that affect the lethality of MLN4924 in melanoma cells.

View Article and Find Full Text PDF

MLN4924 is an investigational small-molecule inhibitor of NEDD8-activating enzyme (NAE) in clinical trials for the treatment of cancer. MLN4924 is a mechanism-based inhibitor, with enzyme inhibition occurring through the formation of a tight-binding NEDD8-MLN4924 adduct. In cell and xenograft models of cancer, we identified treatment-emergent heterozygous mutations in the adenosine triphosphate binding pocket and NEDD8-binding cleft of NAEβ as the primary mechanism of resistance to MLN4924.

View Article and Find Full Text PDF

Enrichment factor (EF) of elements including geo-accumulation indices for soil quality and principal component analysis (PCA) were used to identify the contributions of the origin of sources in the studied area. Results of (40)K, (137)Cs, (238)U and (232)Th including their decay series isotopes in the agricultural soil of Mansa and Bathinda districts in the state of Punjab were presented and discussed. The measured mean radioactivity concentrations for (238)U, (232)Th and (40)K in the agricultural soil of the studied area differed from nationwide average crustal abundances by 51, 17 and 43 %, respectively.

View Article and Find Full Text PDF

Loss of NEDD8-activating enzyme (NAE) function by siRNA knockdown or inhibition by the small molecule NAE inhibitor MLN4924 leads to increased steady-state levels of direct Cullin-RING ligase (CRL) substrates by preventing their ubiquitination and proteasome-dependent degradation. Many of these CRL substrates are involved in cell cycle progression, including a critical DNA replication licensing factor CDT1. Cell cycle analysis of asynchronous and synchronous cultures after NAE inhibition revealed effects on cell cycle distribution and activation of DNA break repair signaling pathways similar to that reported for CDT1 overexpression.

View Article and Find Full Text PDF

MLN4924 is a first-in-class experimental cancer drug that inhibits the NEDD8-activating enzyme, thereby inhibiting cullin-RING E3 ubiquitin ligases and stabilizing many cullin substrates. The mechanism by which MLN4924 inhibits cancer cell proliferation has not been defined, although it is accompanied by DNA rereplication and attendant DNA damage. Here we show that stabilization of the DNA replication factor Cdt1, a substrate of cullins 1 and 4, is critical for MLN4924 to trigger DNA rereplication and inhibit cell proliferation.

View Article and Find Full Text PDF

(Macro)autophagy is a bulk degradation process that mediates the clearance of long-lived proteins and organelles. Autophagy is initiated by double-membraned structures, which engulf portions of cytoplasm. The resulting autophagosomes ultimately fuse with lysosomes, where their contents are degraded.

View Article and Find Full Text PDF

MLN4924 is a potent and selective small molecule NEDD8-activating enzyme (NAE) inhibitor. In most cancer cells tested, inhibition of NAE leads to induction of DNA rereplication, resulting in DNA damage and cell death. However, in preclinical models of activated B cell-like (ABC) diffuse large B-cell lymphoma (DLBCL), we show that MLN4924 induces an alternative mechanism of action.

View Article and Find Full Text PDF

The clinical development of an inhibitor of cellular proteasome function suggests that compounds targeting other components of the ubiquitin-proteasome system might prove useful for the treatment of human malignancies. NEDD8-activating enzyme (NAE) is an essential component of the NEDD8 conjugation pathway that controls the activity of the cullin-RING subtype of ubiquitin ligases, thereby regulating the turnover of a subset of proteins upstream of the proteasome. Substrates of cullin-RING ligases have important roles in cellular processes associated with cancer cell growth and survival pathways.

View Article and Find Full Text PDF

During this work, controlled redox potential methodology was adopted for the complete separation of traces of uranium from the host matrix of mixed hydroxide of Iron. Precipitates of Fe(+2) and Fe(+3) along with other transuranic elements were obtained from acid leached solution of soil by raising the pH to 9 with 14N ammonia solution. The concentration of the uranium observed in the soil samples was 200-600 ppb, whereas in sediment samples, the concentration range was 61-400 ppb.

View Article and Find Full Text PDF

Fragile X syndrome is a common form of cognitive deficit caused by the functional absence of fragile X mental retardation protein (FMRP), a dendritic RNA-binding protein that represses translation of specific messages. Although FMRP is phosphorylated in a group I metabotropic glutamate receptor (mGluR) activity-dependent manner following brief protein phosphatase 2A (PP2A)-mediated dephosphorylation, the kinase regulating FMRP function in neuronal protein synthesis is unclear. Here we identify ribosomal protein S6 kinase (S6K1) as a major FMRP kinase in the mouse hippocampus, finding that activity-dependent phosphorylation of FMRP by S6K1 requires signaling inputs from mammalian target of rapamycin (mTOR), ERK1/2, and PP2A.

View Article and Find Full Text PDF

Fragile X syndrome is a common form of inherited mental retardation and is caused by loss of fragile X mental retardation protein (FMRP), a selective RNA-binding protein that influences the translation of target messages. Here, we identify protein phosphatase 2A (PP2A) as an FMRP phosphatase and report rapid FMRP dephosphorylation after immediate group I metabotropic glutamate receptor (mGluR) stimulation (<1 min) in neurons caused by enhanced PP2A enzymatic activity. In contrast, extended mGluR activation (1-5 min) resulted in mammalian target of rapamycin (mTOR)-mediated PP2A suppression and FMRP rephosphorylation.

View Article and Find Full Text PDF

Fragile X syndrome (FXS), a common inherited form of mental retardation, is caused by the functional absence of the fragile X mental retardation protein (FMRP), an RNA-binding protein that regulates the translation of specific mRNAs at synapses. Altered synaptic plasticity has been described in a mouse FXS model. However, the mechanism by which the loss of FMRP alters synaptic function, and subsequently causes the mental impairment, is unknown.

View Article and Find Full Text PDF

Cytoplasmic assembly of Sm-class small nuclear ribonucleoproteins (snRNPs) is a central process in eukaryotic gene expression. A large macromolecular complex containing the survival of motor neurons (SMN) protein is required for proper snRNP assembly in vivo. Defects in SMN function lead to a human neuromuscular disorder, spinal muscular atrophy (SMA).

View Article and Find Full Text PDF

The biogenesis of spliceosomal small nuclear ribonucleoproteins (snRNPs) requires the cytoplasmic assembly of the Sm-core complex, followed by the hypermethylation of the small nuclear RNA (snRNA) 5' cap. Both the Sm-core complex and the snRNA trimethylguanosine cap are required for the efficient nuclear import of snRNPs. Here, we show that trimethylguanosine synthase 1 (TGS1), the human homologue of the yeast snRNA cap hypermethylase, interacts directly with the survival of motor neuron (SMN) protein.

View Article and Find Full Text PDF

The survival of motor neuron (SMN) protein is mutated in patients with spinal muscular atrophy (SMA). SMN is part of a multiprotein complex required for biogenesis of the Sm class of small nuclear ribonucleoproteins (snRNPs). Following assembly of the Sm core domain, snRNPs are transported to the nucleus via importin beta.

View Article and Find Full Text PDF

Studies have shown nicotine is excreted into maternal milk, so that suckling offspring would be a target of the drug during the pre-weaning period. Since nicotine exposure leads to an upregulation of neuronal nicotinic receptors, this study examines the hypothesis that nicotine delivered via maternal milk is capable of altering neuronal nicotinic receptor regulation in the drug-exposed rat pups. The present study showed that postnatal nicotine exposure via maternal milk was sufficient to induce an upregulation in brain nicotinic receptors similar to that seen in adults that smoke.

View Article and Find Full Text PDF