Publications by authors named "Usha Lokala"

Background: Opioid and substance misuse has become a widespread problem in the United States, leading to the "opioid crisis." The relationship between substance misuse and mental health has been extensively studied, with one possible relationship being that substance misuse causes poor mental health. However, the lack of evidence on the relationship has resulted in opioids being largely inaccessible through legal means.

View Article and Find Full Text PDF

Background: Web-based resources and social media platforms play an increasingly important role in health-related knowledge and experience sharing. There is a growing interest in the use of these novel data sources for epidemiological surveillance of substance use behaviors and trends.

Objective: The key aims were to describe the development and application of the drug abuse ontology (DAO) as a framework for analyzing web-based and social media data to inform public health and substance use research in the following areas: determining user knowledge, attitudes, and behaviors related to nonmedical use of buprenorphine and illicitly manufactured opioids through the analysis of web forum data Prescription Drug Abuse Online Surveillance; analyzing patterns and trends of cannabis product use in the context of evolving cannabis legalization policies in the United States through analysis of Twitter and web forum data (eDrugTrends); assessing trends in the availability of novel synthetic opioids through the analysis of cryptomarket data (eDarkTrends); and analyzing COVID-19 pandemic trends in social media data related to 13 states in the United States as per Mental Health America reports.

View Article and Find Full Text PDF

As Named Entity Recognition (NER) has been essential in identifying critical elements of unstructured content, generic NER tools remain limited in recognizing entities specific to a domain, such as drug use and public health. For such high-impact areas, accurately capturing relevant entities at a more granular level is critical, as this information influences real-world processes. On the other hand, training NER models for a specific domain without handcrafted features requires an extensive amount of labeled data, which is expensive in human effort and time.

View Article and Find Full Text PDF

The development of an ontology facilitates the organization of the variety of concepts used to describe different terms in different resources. The proposed ontology will facilitate the study of cardiothoracic surgical education and data analytics in electronic medical records (EMR) with the standard vocabulary.

View Article and Find Full Text PDF

Background: Novel synthetic opioids are fueling the overdose deaths epidemic in North America.Recently, non-fentanyl novel synthetic opioids have emerged in forensic toxicological results. Cryptomarkets have become important platforms of distribution for illicit substances.

View Article and Find Full Text PDF

With the increasing legalization of medical and recreational use of cannabis, more research is needed to understand the association between depression and consumer behavior related to cannabis consumption. Big social media data has potential to provide deeper insights about these associations to public health analysts. In this interdisciplinary study, we demonstrate the value of incorporating domain-specific knowledge in the learning process to identify the relationships between cannabis use and depression.

View Article and Find Full Text PDF

Background: The United States is facing a "triple wave" epidemic fueled by novel synthetic opioids. Cryptomarkets, anonymous marketplaces located on the deep web, play an increasingly important role in the distribution of illicit substances. This article presents the data collected and processed by the eDarkTrends platform concerning the availability trends of novel synthetic opioids listed on one cryptomarket.

View Article and Find Full Text PDF

As America's opioid crisis has become an "epidemic of epidemics," Ohio has been identified as one of the high burden states regarding fentanyl-related overdose mortality. This study aims to examine changes in the availability of fentanyl, fentanyl analogs, and other non-pharmaceutical opioids on cryptomarkets and assess relationship with the trends in unintentional overdoses in Ohio to provide timely information for epidemiologic surveillance. Cryptomarket data were collected at two distinct periods of time: (1) Agora data covered June 2014-September 2015 and were obtained from Grams archive; (2) Dream Market data from March-April 2018 were extracted using a dedicated crawler.

View Article and Find Full Text PDF