Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been developed as a powerful MS imaging (MSI) tool for the direct investigation of element distributions in biological tissues. Here, this technique was adapted for the analysis of native mouse spinal cord cryosections of 3.1 mm × 1.
View Article and Find Full Text PDFBioimaging mass spectrometric techniques allow direct mapping of metal and biomolecule distributions with high spatial resolution in biological tissue. In this study laser ablation inductively coupled plasma mass spectrometry (LA-ICPMS) was used for imaging of transition metals (Fe, Cu, Zn, Mn, and Ti), alkali and alkaline-earth metals (Na, K, Mg, and Ca, respectively), and selected nonmetals (such as C, P, and S) in native cryosections of mouse heart. The metal and nonmetal images clearly illustrated the shape and the anatomy of the samples.
View Article and Find Full Text PDFLaser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) has been established as a powerful and sensitive surface analytical technique for the determination of concentration and distribution of trace metals within biological systems at micrometer spatial resolution. LA-ICP-MS allows easy quantification procedures if suitable standard references materials (SRM) are available. In this work a new SRM-free approach of solution-based calibration method in LA-ICP-MS for element quantification in hair is described.
View Article and Find Full Text PDF