Publications by authors named "Urvee A Desai"

Polyglutamine expansion in certain proteins causes neurodegeneration in inherited disorders such as Huntington disease and X-linked spinobulbar muscular atrophy. Polyglutamine tracts promote protein aggregation in vitro and in vivo with a strict length-dependence that strongly implicates alternative protein folding and/or aggregation as a proximal cause of cellular toxicity and neurodegeneration. We used an intracellular polyglutamine protein aggregation assay based on fluorescence resonance energy transfer (FRET) to identify inhibitors of androgen receptor (AR) aggregation in three libraries of biologically active small molecules: the Annotated Compound Library, the NINDS Custom Collection and a kinase inhibitor collection.

View Article and Find Full Text PDF

Many neurodegenerative diseases, including tauopathies, Parkinson's disease, amyotrophic lateral sclerosis, and the polyglutamine diseases, are characterized by intracellular aggregation of pathogenic proteins. It is difficult to study modifiers of this process in intact cells in a high-throughput and quantitative manner, although this could facilitate molecular insights into disease pathogenesis. Here we introduce a high-throughput assay to measure intracellular polyglutamine protein aggregation using fluorescence resonance energy transfer (FRET).

View Article and Find Full Text PDF

This work describes a solid-phase immunoassay for 6-keto-prostaglandin F1alpha, the stable hydrolysis product of prostacyclin (prostaglandin I2). Prostacyclin, a potent vasodilator with antiplatelet and antiproliferative properties is an effective treatment for primary pulmonary hypertension and pulmonary arterial hypertension associated with scleroderma and scleroderma-like syndrome. Levels of 6-keto-prostaglandin F1alpha can be directly correlated with levels of prostacyclin.

View Article and Find Full Text PDF

With recent advances in plant biotechnology, transgenic plants have been targeted as an inexpensive means for the mass production of proteins for biopharmaceutical and industrial uses. However, the current plant purification techniques lack a generally applicable, economic, large-scale strategy. In this study, we demonstrate the purification of a model protein, beta-glucuronidase (GUS), by employing the protein calmodulin (CaM) as an affinity tag.

View Article and Find Full Text PDF