Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER)-located protein with cytoprotective effects in neurons and pancreatic β cells in vitro and in models of neurodegeneration and diabetes in vivo. However, the exact mode of MANF action has remained elusive. Here, we show that MANF directly interacts with the ER transmembrane unfolded protein response (UPR) sensor IRE1α, and we identify the binding interface between MANF and IRE1α.
View Article and Find Full Text PDFTherapeutic proteins are currently at the apex of innovation in pharmaceutical medicine. However, their industrial production is technically challenging and improved methods for transient transfection of mammalian cell cultures are necessary. We aimed to find a fast, microliter-scale transfection assay that allows the prediction of protein expression in the transient production settings.
View Article and Find Full Text PDFMammalian transient expression systems enable flexible and rapid production of proteins. They're ideal for expression of human or other mammalian proteins because these systems generate recombinant proteins with more native folding and post-translational modifications-such as glycosylation-than expression systems based on hosts such as E. coli, yeast, or insect cells.
View Article and Find Full Text PDFThe SP100 family members comprise a set of closely related genes on chromosome 2q37.1. The widely expressed SP100 and the leukocyte-specific proteins SP110 and SP140 have been associated with transcriptional regulation and various human diseases.
View Article and Find Full Text PDFType I interferons (IFN) are important for antiviral responses. Melanoma differentiation-associated gene 5 (MDA-5) and retinoic acid-induced gene I (RIG-I) proteins detect cytosolic double-stranded RNA (dsRNA) or 5'-triphosphate (5'-ppp) RNA and mediate IFN production. Cytosolic 5'-ppp RNA and dsRNA are generated during viral RNA replication and transcription by viral RNA replicases [RNA-dependent RNA polymerases (RdRp)].
View Article and Find Full Text PDFStrategies to improve vaccine efficacy are still required, especially in the case of chronic infections, including human immunodeficiency virus (HIV). DNA vaccines have potential advantages over conventional vaccines; however, low immunological efficacy has been demonstrated in many experiments involving large animals and in clinical trials. To improve the immunogenicity of DNA vaccines, we have designed a plasmid vector exploiting the binding capacity of the bovine papillomavirus E2 protein and we have used electroporation (EP) to increase DNA uptake after intradermal inoculation.
View Article and Find Full Text PDFA multiHIV fusion gene expressing an antigenic fusion protein composed of regulatory HIV-1 proteins Rev, Nef, and Tat, as well as Gag p17/p24 and a stretch of 11 cytotoxic T lymphocyte (CTL) epitope clusters from Pol and Env, was cloned into a novel DNA vector named the Gene Transport Unit (GTU). A mouse H-2(d)-restricted HIV-1 gp120 epitope (RGPGRAFVTI) was cloned into the fusion gene as well. In addition to the HIV- 1 genes the GTU codes for a nuclear anchoring protein (bovine papilloma virus E2), ensuring the long maintenance of the vector and a high expression level of the selected immunogens.
View Article and Find Full Text PDF