Publications by authors named "Urtizberea J"

The etiology of polyneuropathies varies in the pediatric population, where hereditary or metabolic disorders are far more common than in adults. However, treatable polyneuropathies, also prevalent in these settings, are those to prioritize. Moreover, diagnosing subacute and chronic symptoms in children can be challenging compared to adults.

View Article and Find Full Text PDF

The Schwartz-Jampel syndrome (SJS, OMIM #255800) is an ultra-rare genetic disease characterized by myotonic manifestations combined with bone and cartilage abnormalities. Following an autosomal recessive mode of inheritance, its prevalence is more significant in highly-inbred areas. The unraveling of the HSPG2 gene encoding a protein of the basal lamina enabled a better nosological delineation of the syndrome.

View Article and Find Full Text PDF

Phospholipase A/acyltransferase 3 (PLAAT3) is a phospholipid-modifying enzyme predominantly expressed in neural and white adipose tissue (WAT). It is a potential drug target for metabolic syndrome, as Plaat3 deficiency in mice protects against diet-induced obesity. We identified seven patients from four unrelated consanguineous families, with homozygous loss-of-function variants in PLAAT3, who presented with a lipodystrophy syndrome with loss of fat varying from partial to generalized and associated with metabolic complications, as well as variable neurological features including demyelinating neuropathy and intellectual disability.

View Article and Find Full Text PDF

Metabolic myopathies are rare inherited disorders that deserve more attention from neurologists and pediatricians. Pompe disease and McArdle disease represent some of the most common diseases in clinical practice; however, other less common diseases are now better-known. In general the pathophysiology of metabolic myopathies needs to be better understood.

View Article and Find Full Text PDF

Although mexiletine effectively treats myotonia, supply disruptions affected Europe between 2008-2018. MyoPath was a mixed-methods, cross-sectional, market research survey conducted January-June 2018 to evaluate consequences of limited access to/awareness of mexiletine in people with myotonia. Part A: qualitative structured interviews (clinicians; advocates for adult patients); Part B: quantitative online questionnaire completed by people with self-reported history of myotonia.

View Article and Find Full Text PDF

Spinal muscular atrophy (SMA) is an autosomal recessive neuromuscular disorder resulting from biallelic alterations of the SMN1 gene: deletion, gene conversion or, in rare cases, intragenic variants. The disease severity is mainly influenced by the copy number of SMN2, a nearly identical gene, which produces only low amounts of full-length (FL) mRNA. Here we describe the first example of retrotransposon insertion as a pathogenic SMN1 mutational event.

View Article and Find Full Text PDF

The Bailey-Bloch congenital myopathy, also known as Native American myopathy (NAM), is an autosomal recessive congenital myopathy first reported in the Lumbee tribe people settled in North Carolina (USA), and characterized by congenital weakness and arthrogryposis, cleft palate, ptosis, short stature, kyphoscoliosis, talipes deformities, and susceptibility to malignant hyperthermia (MH) triggered by anesthesia. NAM is linked to STAC3 gene coding for a component of excitation-contraction coupling in skeletal muscles. A homozygous missense variant (c.

View Article and Find Full Text PDF
Article Synopsis
  • Hereditary myopathies are a diverse group of over 300 genetically-based muscle disorders, with no detailed records in Chile.
  • A study involving 82 Chilean patients with unexplained limb-girdle muscle weakness used advanced genetic testing, leading to clear diagnoses in 59.8% of cases and probable diagnoses in 9.8%.
  • Key gene mutations were identified, including those responsible for 22% and 8.5% of the cases, with some cases showing novel variants and a few linked to autoimmune conditions, indicating Chile's myopathy distribution is similar to global trends, but with a potentially higher rate of dysferlinopathy.
View Article and Find Full Text PDF

Spinal muscular atrophy is a debilitating neuromuscular disease due to the deletion of the SMN1 gene (SMA). The emergence of innovative targeted therapies changed the natural history of this condition. The French registry of SMA (Registre SMA France) was launched in 2020 to obtain a better knowledge of the pathology.

View Article and Find Full Text PDF

Background: Clinical and molecular data on the occurrence and frequency of inherited neuromuscular disorders (NMD) in the Lebanese population is scarce.

Objective: This study aims to provide a retrospective overview of hereditary NMDs based on our clinical consultations in Lebanon.

Methods: Clinical and molecular data of patients referred to a multi-disciplinary consultation for neuromuscular disorders over a 20-year period (1999-2019) was reviewed.

View Article and Find Full Text PDF

Congenital insensitivity to pain with anhidrosis (CIPA) is a rare autosomal recessive disease resulting from mutations in the NTRK1 gene encoding the neurotrophic tyrosine kinase-1 receptor. In this multicenter observational retrospective study, we investigated CIPA patients identified from French laboratories sequencing the NTRK1 gene, and seven patients were identified. Patients originated from France (2), Suriname (2), Mali (1), Kazakhstan (1), and Algeria (1).

View Article and Find Full Text PDF

Background: Dominant and recessive autosomal pathogenic variants in the three major genes (COL6A1-A2-A3) encoding the extracellular matrix protein collagen VI underlie a group of myopathies ranging from early-onset severe conditions (Ullrich congenital muscular dystrophy) to milder forms maintaining independent ambulation (Bethlem myopathy). Diagnosis is based on the combination of clinical presentation, muscle MRI, muscle biopsy, analysis of collagen VI secretion, and COL6A1-A2-A3 genetic analysis, the interpretation of which can be challenging.

Objective: To refine the phenotypical spectrum associated with the frequent COL6A3 missense variant c.

View Article and Find Full Text PDF

STIM1, the stromal interaction molecule 1, is the key protein for maintaining calcium concentration in the endoplasmic reticulum by triggering the Store Operated Calcium Entry (SOCE). Bi-allelic mutations in STIM1 gene are responsible for a loss-of-function in patients affected with a CRAC channelopathy syndrome in which severe combined immunodeficiency syndrome (SCID-like), autoimmunity, ectodermal dysplasia and muscle hypotonia are combined. Here, we studied two siblings from a consanguineous Syrian family, presenting with muscle weakness, hyperlaxity, elastic skin, tooth abnormalities, dysmorphic facies, hypoplastic patellae and history of respiratory infections.

View Article and Find Full Text PDF

The Confucian philosophy teaches us that the search for truth does not always follow a straight line. The clinical observation presented here illustrates this perfectly and is about a child afflicted by a rare neuromuscular disorder (in Chinese, the word 'myopathy' is translated to meaning 'frozen man') in whom was suspected a deficit in αB crystallin. The authors take the opportunity to put the spotlight on China, this great country which did not wait for Alain Peyrefitte to wake up or, more precisely, to rewake.

View Article and Find Full Text PDF

Objective: To clarify the prevalence, long-term natural history, and severity determinants of -related myopathy (SEPN1-RM), we analyzed a large international case series.

Methods: Retrospective clinical, histologic, and genetic analysis of 132 pediatric and adult patients (2-58 years) followed up for several decades.

Results: The clinical phenotype was marked by severe axial muscle weakness, spinal rigidity, and scoliosis (86.

View Article and Find Full Text PDF

Congenital myopathies represent a quite heterogeneous group of neuromuscular disorders both at the clinical and genetic level. High-throughput sequencing (NGS), targeted or not, combined with muscle pathology, greatly facilitate their accurate characterization and occasionally lead to unexpected discoveries like in the case reported here in a Kuwaiti family facing a long diagnostic odyssey.

View Article and Find Full Text PDF

The autosomal recessive demyelinating form of Charcot-Marie-Tooth can be due to SH3TC2 gene pathogenic variants (CMT4C, AR-CMTde-SH3TC2). We report on a series of 13 patients with AR-CMTde-SH3TC2 among a French cohort of 350 patients suffering from all type of inheritance peripheral neuropathy. The SH3TC2 gene appeared to be the most frequently mutated gene for demyelinating neuropathy in this series by NGS.

View Article and Find Full Text PDF

Background: Limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A) is a progressive myopathy caused by deficiency of calpain 3, a calcium-dependent cysteine protease of skeletal muscle, and it represents the most frequent type of LGMD worldwide. In the last few years, muscle magnetic resonance imaging (MRI) has been proposed as a tool for identifying patterns of muscular involvement in genetic disorders and as a biomarker of disease progression in muscle diseases. In this study, 57 molecularly confirmed LGMDR1 patients from a European cohort (age range 7-78 years) underwent muscle MRI and a global evaluation of functional status (Gardner-Medwin and Walton score and ability to raise the arms).

View Article and Find Full Text PDF

Background: The most common inherited peripheral neuropathy is Charcot-Marie-Tooth disease (CMT), with a prevalence of 1/2500. Other symptoms can be associated to the condition, such as hearing loss. Currently, no global hearing impairment assessment has been determined, and the physiopathology is not well known.

View Article and Find Full Text PDF

Distal hereditary motor neuropathies are a rare subgroup of inherited peripheral neuropathies hallmarked by a length-dependent axonal degeneration of lower motor neurons without significant involvement of sensory neurons. We identified patients with heterozygous nonsense mutations in the αII-spectrin gene, SPTAN1, in three separate dominant hereditary motor neuropathy families via next-generation sequencing. Variable penetrance was noted for these mutations in two of three families, and phenotype severity differs greatly between patients.

View Article and Find Full Text PDF

Background: Subtelomeres are variable regions between telomeres and chromosomal-specific regions. One of the most studied pathologies linked to subtelomeric imbalance is facioscapulohumeral dystrophy (FSHD). In most cases, this disease involves shortening of an array of D4Z4 macrosatellite elements at the 4q35 locus.

View Article and Find Full Text PDF

Background And Objectives: Steinert's disease or myotonic dystrophy type 1 (MD1), (OMIM 160900), is the most prevalent myopathy in adults. It is a multisystemic disorder with dysfunction of virtually all organs and tissues and a great phenotypical variability, which implies that it has to be addressed by different specialities with experience in the disease. The knowledge of the disease and its management has changed dramatically in recent years.

View Article and Find Full Text PDF