Publications by authors named "Urte Samukaite-Bubniene"

Recently, rare diseases have received attention due to the need for improvement in diagnosed patients' and their families' lives. Duchenne muscular dystrophy (DMD) is a rare, severe, progressive, muscle-wasting disease. Today, the therapeutic standard for treating DMD is corticosteroids, which cause serious adverse side effects.

View Article and Find Full Text PDF

The appearance of the biomarkers in body fluids like blood, urine, saliva, tears, etc. can be used for the identification of many diseases. This article aimed to summarize the studies about electrochemical biosensors with molecularly imprinted polymers as sensitive and selective layers on the electrode to detect protein-based biomarkers of such neurodegenerative diseases as Alzheimer's disease, Parkinson's disease, and stress.

View Article and Find Full Text PDF

The development of microbial fuel cells based on electro-catalytic processes is among the novel topics, which are recently emerging in the sustainable development of energetic systems. Microbial fuel cells have emerged as unique biocatalytic systems, which transform the chemical energy accumulated in renewable organic fuels and at the same time reduce pollution from hazardous organic compounds. However, not all microorganisms involved in metabolic/catalytic processes generate sufficient redox potential.

View Article and Find Full Text PDF

This paper provides an overview of the application of conducting polymers (CPs) used in the design of tactile sensors. While conducting polymers can be used as a base in a variety of forms, such as films, particles, matrices, and fillers, the CPs generally remain the same. This paper, first, discusses the chemical and physical properties of conducting polymers.

View Article and Find Full Text PDF

The serologic diagnosis of coronavirus disease 2019 (COVID-19) and the evaluation of vaccination effectiveness are identified by the presence of antibodies specific to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). In this paper, we present the electrochemical-based biosensing technique for the detection of antibodies specific to the SARS-CoV-2 proteins. Recombinant SARS-CoV-2 spike proteins (rSpike) were immobilised on the surface of a gold electrode modified by a self-assembled monolayer (SAM).

View Article and Find Full Text PDF

Recent challenges in the pharmaceutical and biomedical fields require the development of new analytical methods. Therefore, the development of new sensors is a very important task. In this paper, we are outlining the development of molecularly imprinted polymer (MIP) based sensors, which belongs to important branch of affinity sensors.

View Article and Find Full Text PDF

In this study, the nitrogen-fixing, Gram-negative soil bacteria was successfully utilized as the main biocatalyst in a bacteria-based microbial fuel cell (MFC) device. This research investigates the double-chambered, H-type -based MFC that was operated in modified Norris medium (pH = 7) under ambient conditions using potassium ferricyanide as an electron acceptor in the cathodic compartment. The designed MFC exhibited an open-circuit voltage (OCV) of 635 mV and a power output of 1.

View Article and Find Full Text PDF

This review is dedicated to the development of molecularly imprinted polymers (MIPs) and the application of MIPs in sensor design. MIP-based biological recognition parts can replace receptors or antibodies, which are rather expensive. Conducting polymers show unique properties that are applicable in sensor design.

View Article and Find Full Text PDF

Early detection of viral pathogens by DNA-sensors in clinical samples, contaminated foods, soil or water can dramatically improve clinical outcomes and reduce the socioeconomic impact of diseases such as COVID-19. Clustered regularly interspaced short palindromic repeat (CRISPR) and its associated protein Cas12a (previously known as CRISPR-Cpf1) technology is an innovative new-generation genomic engineering tool, also known as 'genetic scissors', that has demonstrated the accuracy and has recently been effectively applied as appropriate (E-CRISPR) DNA-sensor to detect the nucleic acid of interest. The CRISPR-Cas12a from Prevotella and Francisella 1 are guided by a short CRISPR RNA (gRNA).

View Article and Find Full Text PDF

Monitoring and tracking infection is required in order to reduce the spread of the coronavirus disease 2019 (COVID-19), induced by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To achieve this goal, the development and deployment of quick, accurate, and sensitive diagnostic methods are necessary. The determination of the SARS-CoV-2 virus is performed by biosensing devices, which vary according to detection methods and the biomarkers which are inducing/providing an analytical signal.

View Article and Find Full Text PDF

Polypyrrole (Ppy) and poly(methylene blue) (PMB) heterostructure (Ppy-PMB) was electrochemically formed on the indium tin oxide (ITO) coated glass slides, which served as working electrodes. For electropolymerization, a solution containing pyrrole, methylene blue, and a saccharide (lactose, sucrose, or heparin) that served as dopant was used. The aim of this study was to compare the effect of the saccharides (lactose, sucrose, and heparin) on the electrochromic properties of the Ppy-PMB layer.

View Article and Find Full Text PDF

Viral infections are the most common among diseases that globally require around 60 percent of medical care. However, in the heat of the pandemic, there was a lack of medical equipment and inpatient facilities to provide all patients with viral infections. The detection of viral infections is possible in three general ways such as (i) direct virus detection, which is performed immediately 1-3 days after the infection, (ii) determination of antibodies against some virus proteins mainly observed during/after virus incubation period, (iii) detection of virus-induced disease when specific tissue changes in the organism.

View Article and Find Full Text PDF

The review focuses on the overview of electrochemical sensors based on molecularly imprinted polymers (MIPs) for the determination of uric acid. The importance of robust and precise determination of uric acid is highlighted, a short description of the principles of molecular imprinting technology is presented, and advantages over the others affinity-based analytical methods are discussed. The review is mainly concerned with the electro-analytical methods like cyclic voltammetry, electrochemical impedance spectroscopy, amperometry, etc.

View Article and Find Full Text PDF

Rapid detection of nucleic acids (DNA or RNA) by inexpensive, selective, accurate, and highly sensitive methods is very important for biosensors. DNA-sensors based on DNA-modifying enzymes for fast determination and monitoring of pathogenic (Zika, Dengue, SARS-Cov-2 (inducer of COVID-19), human papillomavirus, HIV, etc.) viruses and diagnosis of virus-induced diseases is a key factor of this overview.

View Article and Find Full Text PDF

The progress observed in 'soft robotics' brought some promising research in flexible tactile, pressure and force sensors, which can be based on polymeric composite materials. Therefore, in this paper, we intend to evaluate the characteristics of a force-sensitive material-polyethylene-carbon composite (Velostat) by implementing this material into the design of the flexible tactile sensor. We have explored several possibilities to measure the electrical signal and assessed the mechanical and time-dependent properties of this tactile sensor.

View Article and Find Full Text PDF

Uric acid-imprinted polypyrrole-based (MIP-Ppy) electrochemical quartz crystal microbalance sensor (EQCM) was developed. Experiments and theoretical calculations were focused on molecular interactions between uric acid molecule and: i) polypyrrole imprinted by uric acid (MIP-Ppy) ii) polypyrrole film without any molecular imprints (NIP-Ppy). Resonant frequency differences during electrochemical deposition of MIP-Ppy and NIP-Ppy films were observed and were attributed to the phenomenon of molecule capture within formed Ppy matrix.

View Article and Find Full Text PDF

Glucose oxidase (GOx) is one of the most frequently used enzymes in a design of enzymatic biosensors and biofuel cells, which are novel electrical energy generation systems. Therefore, a better understanding of the mode of action of this enzyme is very important for further development of GOx-based sensors. In this research fluorescence properties of GOx in different acidic media have been estimated by the evaluation of redox states of active center that is flavine adenine dinucleotide (FAD).

View Article and Find Full Text PDF

In this research we have applied sol-gel synthesis for the deposition of tungsten (VI) oxide (WO) layers using two different reductants (ethanol and propanol) and applying different dipping times. WO samples were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), Fourier Transform Infrared spectroscopy (FTIR), photoluminescence (PL) and time-resolved photoluminescence decay methods. Photoelectrochemical (PEC) behaviour of synthesized coatings was investigated using cyclic voltammetry in the dark and under illumination.

View Article and Find Full Text PDF

In this study a polycarbonate filter membrane (PcFM) with 400 nm diameter holes was covered/protruded by single walled carbon nanotubes (SWCNT) and then formed PcFM/SWCNT structure was covered by thin layer of graphene oxide (GO) or reduced graphene oxide (rGO) in order to get the multilayered PcFM/SWCNT/GO and PcFM/SWCNT/rGO coatings, respectively. It was determined that the SWCNTs filaments were able to form a layer on the polycarbonate membrane having a number of carbon nanotube arranged in different orientations. A fraction of SWCNT filaments protruded through the holes of polycarbonate membrane and in such way significantly enhanced the adhesion of SWCNT-based layer and provided electrical conductivity across the PcFM.

View Article and Find Full Text PDF