Publications by authors named "Urszula T Iwaniec"

Ethanol consumption is associated with positive, negative, and neutral effects on the skeletal system. Our previous work using a nonhuman primate model of voluntary ethanol consumption showed that chronic ethanol use has an impact on skeletal attributes, most notably on biochemical markers of bone turnover. However, these studies were limited by small sample sizes and resulting lack of statistical power.

View Article and Find Full Text PDF

The hypothalamus and dorsal vagal complex (DVC) are both important for integration of signals that regulate energy balance. Increased leptin transgene expression in either the hypothalamus or DVC of female rats was shown to decrease white adipose tissue and circulating levels of leptin and adiponectin. However, in contrast to hypothalamus, leptin transgene expression in the DVC had no effect on food intake, circulating insulin, ghrelin and glucose, nor on thermogenic energy expenditure.

View Article and Find Full Text PDF

Chronic heavy alcohol consumption is a risk factor for low trauma bone fracture. Using a non-human primate model of voluntary alcohol consumption, we investigated the effects of 6 months of ethanol intake on cortical bone in cynomolgus macaques (Macaca fascicularis). Young adult (6.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) is hypothesized to serve as an expandable/contractible fat depot which functions, in part, to minimize energy requirements for sustaining optimal hematopoiesis. We investigated whether BMAT is required for immune reconstitution following injury. Male wild type (WBB6F1, WT) and BMAT-deficient WBB6F1/J-/J () mice were lethally irradiated.

View Article and Find Full Text PDF

Chronic heavy alcohol consumption may influence the skeleton by suppressing intracortical bone remodeling which may impact the quality of bone and its mechanical properties. However, this aspect has not been thoroughly assessed in either humans or animal models whose cortical bone microstructure resembles the microstructure of human cortical bone. The current study is the first to investigate the effects of chronic heavy alcohol consumption on various mechanical properties of bone in a non-human primate model with intracortical remodeling.

View Article and Find Full Text PDF

Absence of leptin confers metabolic dysfunction resulting in morbid obesity. Bone growth and maturation are also impaired. Partial leptin resistance is more common than leptin deficiency and, when induced by feeding mice a high fat diet, often has a negative effect on bone.

View Article and Find Full Text PDF

The effect of diet-induced obesity on bone in rodents is variable, with bone mass increases, decreases, and no impact reported. The goal of this study was to evaluate whether the composition of obesogenic diet may influence bone independent of its effect on body weight. As proof-of-principle, we used a mouse model to compare the skeletal effects of a commonly used high fat 'Western' diet and a modified high fat diet.

View Article and Find Full Text PDF

Mice are typically housed at room temperature (∼22 °C), which is well below their thermoneutral zone and results in cold stress. Chronic cold stress leads to increased adaptive thermogenesis and reductions in cancellous bone volume and bone marrow adipose tissue mass in long bones of growing mice. There is strong evidence that increased neuronal activity initiates the metabolic response of intrascapular brown adipose tissue (BAT) to cold stress, but it is less clear whether bone is regulated through a similar mechanism.

View Article and Find Full Text PDF

Estrogen signaling is critical for the development and maintenance of healthy bone, and age-related decline in estrogen levels contributes to the development of post-menopausal osteoporosis. Most bones consist of a dense cortical shell and an internal mesh-like network of trabecular bone that respond differently to internal and external cues such as hormonal signaling. To date, no study has assessed the transcriptomic differences that occur specifically in cortical and trabecular bone compartments in response to hormonal changes.

View Article and Find Full Text PDF

Mice are typically housed at temperatures well below their thermoneutral zone. When individually housed at room temperature (~22 °C) mice experience cold stress which results in cancellous bone loss and has the potential to alter the skeletal response to treatment. It is not clear if there is a threshold temperature for cold stress-induced bone loss.

View Article and Find Full Text PDF

Laboratory mice are typically housed at temperatures below the thermoneutral zone for the species, resulting in cold stress and premature cancellous bone loss. Furthermore, mice are more dependent upon non-shivering thermogenesis to maintain body temperature during spaceflight, suggesting that microgravity-induced bone loss may be due, in part, to altered thermogenesis. Consequently, we assessed whether housing mice at room temperature modifies the skeletal response to simulated microgravity.

View Article and Find Full Text PDF

Zinc (Zn) deficiency impairs bone growth. However, the precise skeletal effects of varying levels of Zn deficiency and response to subsequent Zn repletion on the growing skeleton are incompletely understood. To address this gap in knowledge, we investigated the effects of dietary Zn ((severe deficiency (< 0.

View Article and Find Full Text PDF

Bone marrow adipose tissue (BMAT) levels are higher in distal femur metaphysis of female mice housed at thermoneutral (32°C) than in mice housed at 22°C, as are abdominal white adipose tissue (WAT) mass, and serum leptin levels. We performed two experiments to explore the role of increased leptin in temperature-enhanced accrual of BMAT. First, we supplemented 6-week-old female C57BL/6J (B6) mice with leptin for 2 weeks at 10 µg/d using a subcutaneously implanted osmotic pump.

View Article and Find Full Text PDF

Insulin-like growth factor 1 (IGF-1) influences bone turnover. Transient decreases in IGF-I levels and/or bioavailability may contribute to the detrimental effects of alcohol on bone. The goals of this non-human primate study were to i) evaluate the 20-h response of bone turnover markers to ethanol consumption and ii) assess how ethanol consumption influences the relationship between IGF-1 and these markers.

View Article and Find Full Text PDF

As part of the risk management plan for human system risks at the US National Aeronautics and Space Administration (NASA), the NASA Human Systems Risk Board uses causal diagrams (in the form of directed, acyclic graphs, or DAGs) to communicate the complex web of events that leads from exposure to the spaceflight environment to performance and health outcomes. However, the use of DAGs in this way is relatively new at NASA, and thus far, no method has been articulated for testing their veracity using empirical data. In this paper, we demonstrate a set of procedures for doing so, using (a) a DAG related to the risk of bone fracture after exposure to spaceflight; and (b) four datasets originally generated to investigate this phenomenon in rodents.

View Article and Find Full Text PDF

Scope: A dose-ranging study is performed using young estrogen-depleted rats to determine whether dietary isoliquiritigenin (ILQ) alters bone metabolism and if the effects are associated with estrogen receptor signaling.

Methods And Results: Six-week-old rats (ovariectomized at 4 weeks of age) are fed diets containing 0, 100, 250, or 750 ppm ILQ (n = 5/treatment) for 7 days. Gene expression in femur and uterus, blood markers of bone turnover, body composition, and uterine weight and epithelial cell height are determined.

View Article and Find Full Text PDF

Purpose: Alcohol consumption suppressed bone turnover in male non-human primates; however, it is unclear the extent to which this effect depends upon biological variables. Using archived plasma samples, we investigated whether sex, age of onset of alcohol intake, and species influence the effects of graded increases in alcohol consumption on bone turnover markers.

Methods: 91 male and female macaques (rhesus and cynomolgus), ranging in age from 4 years (adolescent) to 10 years (adult) were required to increase their consumption of ethanol in 30-day increments: 0 g/kg/day, followed by 0.

View Article and Find Full Text PDF

Development of optimal bone mass during early adulthood is determined by the balance between bone formation and resorption. The utility of minimally invasive biomarkers for monitoring bone turnover balance in maturing non-human primates has received limited attention. This study evaluated the biological variation of osteocalcin (a marker of bone formation), carboxyterminal cross-linking telopeptide of type 1 collagen (CTX, a marker of bone resorption), and the ratio of osteocalcin to CTX (reflecting bone turnover balance), in 136 rhesus and cynomolgus macaques aged 3.

View Article and Find Full Text PDF

Advanced age is the strongest risk factor for osteoporosis. The immunomodulator drug rapamycin extends lifespan in numerous experimental model organisms and is being investigated as a potential therapeutic to slow human aging, but little is known about the effects of rapamycin on bone. We evaluated the impact of rapamycin treatment on bone mass, architecture, and indices of bone turnover in healthy adult (16-20 weeks old at treatment initiation) female wild-type (ICR) and Nrf2 mice, a mouse model of oxidative damage and aging-related disease vulnerability.

View Article and Find Full Text PDF

Dieting is a common but often ineffective long-term strategy for preventing weight gain. Similar to humans, adult rats exhibit progressive weight gain. The adipokine leptin regulates appetite and energy expenditure but hyperleptinemia is associated with leptin resistance.

View Article and Find Full Text PDF

Sixteen-week-old female C57BL/6J mice were sacrificed aboard the International Space Station after 37 days of flight (RR-1 mission) and frozen carcasses returned to Earth. RNA was isolated from interscapular brown adipose tissue (BAT) and gonadal white adipose tissue (WAT). Spaceflight resulted in differential expression of genes in BAT consistent with increased non-shivering thermogenesis and differential expression of genes in WAT consistent with increased glucose uptake and metabolism, adipogenesis, and β-oxidation.

View Article and Find Full Text PDF

Mechanical loading of the skeleton during normal weight bearing plays an important role in bone accrual and turnover balance. We recently evaluated bone microarchitecture in the femoral head in 5.6-week-old male Sprague Dawley rats subjected to a 4-day spaceflight aboard STS-41.

View Article and Find Full Text PDF

Chronic heavy alcohol use is often associated with reduced bone mineral density and altered bone turnover. However, the dose response effects of ethanol on bone turnover have not been established. This study examined the effects of graded increases of ethanol consumption on biochemical markers of bone turnover in young adult male cynomolgus macaques (Macaca fascicularis).

View Article and Find Full Text PDF

The gravitostat is purported to function as a leptin-independent, osteocyte-dependent mechanism for regulation of energy balance. If correct, reduced activation of gravitostat signaling caused by prolonged sitting may contribute to obesity. The gravitostat concept is supported by reduced body mass in rodents following surgical implantation of weighted capsules.

View Article and Find Full Text PDF

Menopause is a natural physiological process in older women that is associated with reduced estrogen production and results in increased risk for obesity, diabetes, and osteoporosis. 17α-estradiol (17α-E2) treatment in males, but not females, reverses several metabolic conditions associated with advancing age, highlighting sexually dimorphic actions on age-related pathologies. In this study we sought to determine if 17α-E2 could prevent ovariectomy (OVX)-mediated detriments on adiposity and bone parameters in females.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: