Polydopamine-ethylene glycol dimethacrylate copolymer is a biocompatible coating with cell adhesion promotion and antibiofilm properties. This copolymer has been successfully applied on metallic implants, such as stainless steel and titanium implants, using several deposition techniques (. layer-by-layer, silane activation, chemical vapor deposition, or liquid-assisted plasma polymerization).
View Article and Find Full Text PDFThe deposition of polymeric thin layers bearing reactive functional groups is a promising solution to provide functionality on otherwise inert surfaces, for instance, for bioconjugation purposes. Atmospheric pressure plasma (AP plasma) deposition technology offers many advantages, such as fast deposition rates, low costs, low waste generation and suitability for coating various kind of material surfaces. In this work, the AP plasma-assisted copolymerization of methyl methacrylate (MMA) with a vinyl derivative of L-DOPA was studied in order to deposit coatings with reactive catechol/quinone groups suitable for protein covalent immobilization.
View Article and Find Full Text PDFBioconjugation of enzymes on coatings based on polydopamine (PDA) layers is an appealing approach to control biological responses on biomedical implant surfaces. As alternative to PDA wet deposition, a fast, solvent-free, and dynamic deposition approach based on atmospheric-pressure plasma dielectric barrier discharge process is considered to deposit on metallic surfaces acrylic-based interlayers containing highly chemically reactive catechol/quinone groups. A biomimetic approach based on covalent immobilization of Dispersin B, an enzyme with antibiofilm properties, shows the bioconjugation potential of the novel plasma polymer layers.
View Article and Find Full Text PDF