Publications by authors named "Ursula Manuelpillai"

Study Question: What factors regulate elongated telomere length in the human placenta?

Summary Answer: Hypomethylation of TERRA promoters in the human placenta is associated with high TERRA expression, however, no clear mechanistic link between these phenomena and elongated telomere length in the human placenta was found.

What Is Known Already: Human placenta tissue and trophoblasts show longer telomere lengths compared to gestational age-matched somatic cells. However, telomerase (hTERT) expression and activity in the placenta is low, suggesting a role for an alternative lengthening of telomeres (ALT).

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are one of the most attractive cell types for cell-based bone tissue repair applications. Fetal-derived MSCs and maternal-derived MSCs have been isolated from chorionic villi of human term placenta and the decidua basalis attached to the placenta following delivery, respectively. Chorionic-derived MSCs (CMSCs) and decidua-derived MSCs (DMSCs) generated in this study met the MSCs criteria set by International Society of Cellular Therapy.

View Article and Find Full Text PDF

We previously demonstrated that mesenchymal cells from human amniotic membrane (hAMTCs) inhibit the generation and maturation of monocyte-derived dendritic cells (DCs) in vitro. Considering the crucial role of DCs in the immune response and that epithelial cells of the human amniotic membrane (hAECs) share some of the immunoregulatory properties of hAMTCs, we investigated whether hAECs also modulate monocyte-derived DCs. We compared hAECs with hAMTCs in a cell-to-cell contact setting and their secreted factors in modulating DC differentiation and function.

View Article and Find Full Text PDF

Human chorionic mesenchymal stem/stromal cells (CMSCs) derived from the placenta are similar to adult tissue-derived MSCs. The aim of this study was to investigate the role of these cells in normal placental development. Transcription factors, particularly members of the homeobox gene family, play crucial roles in maintaining stem cell proliferation and lineage specification in embryonic tissues.

View Article and Find Full Text PDF

Background: Intravenous infusion of human amniotic epithelial cells (hAECs) has been shown to ameliorate hepatic fibrosis in murine models. Hepatic stellate cells (HSCs) are the principal collagen-secreting cells in the liver. The aim of this study was to investigate whether factors secreted by hAECs and present in hAEC-conditioned medium (CM) have anti-fibrotic effects on activated human HSCs.

View Article and Find Full Text PDF

Background Aims: Multiple sclerosis (MS) is considered to be a T-cell-mediated disease. Although MS remits with corticosteroid treatment, the disease relapses on discontinuation of therapy. Human amniotic epithelial cells (hAEC) from the placenta are readily accessible in large quantities and have anti-inflammatory properties.

View Article and Find Full Text PDF

Placenta derived human amniotic epithelial cells (hAEC) are an attractive source of stem cells for the generation of hepatocyte-like cells (HLC) for therapeutic applications to treat liver diseases. During hAEC differentiation into HLC, they become increasingly immunogenic, which may result in immune cell-mediated rejection upon transplantation into allogeneic recipients. Placing cells within devices such as alginate microcapsules can prevent immune cell-mediated rejection.

View Article and Find Full Text PDF

Lung diseases are a major cause of global morbidity and mortality that are treated with limited efficacy. Recently stem cell therapies have been shown to effectively treat animal models of lung disease. However, there are limitations to the translation of these cell therapies to clinical disease.

View Article and Find Full Text PDF

Abnormal trophoblast function is associated with human fetal growth restriction (FGR). Targeted disruption of homeobox gene transforming growth β-induced factor (TGIF-1) results in placental dysfunction in the mouse. The role of human TGIF-1 in placental cell function is unknown.

View Article and Find Full Text PDF

Xenotransplantation of microencapsulated fetal pig islet-like cell clusters (FP ICCs) offers a potential cellular therapy for type 1 diabetes. Although microcapsules prevent direct contact of the host immune system with the xenografted tissue, poor graft survival is still an issue. This study aimed to characterise the nature of the host immune cells present on the engrafted microcapsules and effects on encapsulated FP ICCs that were transplanted into immunocompetent mice.

View Article and Find Full Text PDF

Hepatocyte transplantation is being trialled as an alternative to whole organ transplant for patients with acute liver failure and liver specific metabolic diseases. Due to the scarcity of human hepatocytes, hepatocyte-like cells (HLC) generated from stem cells may become a viable alternative to hepatocyte transplantation. Human amniotic epithelial cells (hAEC) from the placenta have stem cell-like properties and can be differentiated into HLC.

View Article and Find Full Text PDF

Human hepatocyte transplantation is being trialled in lieu of orthotopic liver transplants for patients with acute and chronic liver diseases. Stem cells that can be differentiated into hepatocyte-like cells may replace human hepatocytes that are difficult to source, culture and in critically short supply. Hepatocyte-like cells have been derived from embryonic and adult tissue stem cells using a combination of growth factors and chemical inducers.

View Article and Find Full Text PDF

Multiple Sclerosis (MS) is an autoimmune, neurodegenerative disease of the central nervous system (CNS) characterized by demyelination through glial cell loss. Current and proposed therapeutic strategies to arrest demyelination and/or promote further remyelination include: (i) modulation of the host immune system; and/or (ii) transplantation of myelinating/stem or progenitor cells to the circulation or sites of injury. However, significant drawbacks are inherent with both approaches.

View Article and Find Full Text PDF

Chronic hepatic inflammation from multiple etiologies leads to a fibrogenic response that can progress to cirrhosis and liver failure. Transplantation of human amniotic epithelial cells (hAEC) from term delivered placenta has been shown to decrease mild to moderate hepatic fibrosis in a murine model. To model advanced human liver disease and assess the efficacy of hAEC therapy, we transplanted hAEC in mice with advanced hepatic fibrosis.

View Article and Find Full Text PDF

Human amniotic epithelial cells (hAEC) have stem cell-like features and immunomodulatory properties. Here we show that hAEC significantly suppressed splenocyte proliferation in vitro and potently attenuated a mouse model of multiple sclerosis (MS). Central nervous system (CNS) CD3(+) T cell and F4/80(+) monocyte/macrophage infiltration and demyelination were significantly reduced with hAEC treatment.

View Article and Find Full Text PDF

Human amniotic epithelial cells (hAEC) isolated from term placenta have stem cell-like properties, differentiate into tissue specific cells and reduce lung and liver inflammation and fibrosis following transplantation into disease models established in mice. These features together with their low immunogenicity and immunosuppressive properties make hAEC an attractive source of cells for potential therapeutic applications. However, generation of large cell numbers required for therapies through serial expansion in xenobiotic-free media may be a limiting factor.

View Article and Find Full Text PDF

Difficulties associated with long-term culture of primary trophoblasts have proven to be a major hurdle in their functional characterization. In order to circumvent this issue, several model cell lines have been established over many years using a variety of different approaches. Due to their differing origins, gene expression profiles and behaviour in vitro, different model lines have been utilized to investigate specific aspects of trophoblast biology.

View Article and Find Full Text PDF

Lung diseases constitute a major global burden of health and are characterized by inflammation and chronic fibrosis resulting in a loss of gas exchange units. To date there has been no effective treatment to reverse these chronic inflammatory changes and tissue remodelling. Recently, stem cells have been shown to successfully treat animal models of lung disease.

View Article and Find Full Text PDF

Context: The pathogenic origin of preeclampsia is defective placental development (placentation) and function. Preeclampsia is not diagnosed until later in pregnancy, and reliable early detection is highly desirable. HtrA3 is a recently cloned gene with high expression during placentation in the mouse, rhesus monkey, and human.

View Article and Find Full Text PDF

Rationale: Chronic lung disease characterized by loss of lung tissue, inflammation, and fibrosis represents a major global health burden. Cellular therapies that could restore pneumocytes and reduce inflammation and fibrosis would be a major advance in management.

Objectives: To determine whether human amnion epithelial cells (hAECs), isolated from term placenta and having stem cell-like and antiinflammatory properties, could adopt an alveolar epithelial phenotype and repair a murine model of bleomycin-induced lung injury.

View Article and Find Full Text PDF

Chronic liver injury and inflammation lead to hepatic fibrosis, cirrhosis, and liver failure. Embryonic and mesenchymal stem cells have been shown to reduce experimental liver fibrosis but have potential limitations, including the formation of dysplastic precursors, tumors, and profibrogenic cells. Other stem-like cells may reduce hepatic inflammation and fibrosis without tumor and profibrogenic cell formation.

View Article and Find Full Text PDF

The genome of extraembryonic tissue, such as the placenta, is hypomethylated relative to that in somatic tissues. However, the origin and role of this hypomethylation remains unclear. The DNA methyltransferases DNMT1, -3A, and -3B are the primary mediators of the establishment and maintenance of DNA methylation in mammals.

View Article and Find Full Text PDF

Acute respiratory distress syndrome is characterized by loss of lung tissue as a result of inflammation and fibrosis. Augmenting tissue repair by the use of mesenchymal stem cells may be an important advance in treating this condition. We evaluated the role of term human umbilical cord cells derived from Wharton's jelly with a phenotype consistent with mesenchymal stem cells (uMSCs) in the treatment of a bleomycin-induced mouse model of lung injury.

View Article and Find Full Text PDF

Plasma concentrations of biologically active vitamin D (1,25-(OH)(2)D) are tightly controlled via feedback regulation of renal 1alpha-hydroxylase (CYP27B1; positive) and 24-hydroxylase (CYP24A1; catabolic) enzymes. In pregnancy, this regulation is uncoupled, and 1,25-(OH)(2)D levels are significantly elevated, suggesting a role in pregnancy progression. Epigenetic regulation of CYP27B1 and CYP24A1 has previously been described in cell and animal models, and despite emerging evidence for a critical role of epigenetics in placentation generally, little is known about the regulation of enzymes modulating vitamin D homeostasis at the fetomaternal interface.

View Article and Find Full Text PDF

Successful pregnancy depends on the precise regulation of extravillous trophoblast (EVT) invasion into the uterine decidua, primarily by decidua-derived factors. In humans, during early pregnancy interleukin 11 (IL11) is maximally expressed in the decidua, with its receptor, IL11 receptor alpha (IL11RA), also identified on invasive EVTs in vivo. Although a role for IL11 in EVT migration has been established, whether it also plays a role in regulating EVT invasion is unknown.

View Article and Find Full Text PDF