Although both the tendency of 2D materials to bend out of plane as well as its effect on materials' properties are well known, the factors influencing this phenomenon have not been extensively studied. Graphene, the one-atom-thick membrane of carbon atoms, is both arguably the best known 2D material, as well as the most prone to spontaneous corrugations. Here, we use electron diffraction to systematically study the factors influencing corrugations in graphene, including the size of the free-standing area, the preparation method, the amount of surface contamination, and electron-beam-induced structural disorder.
View Article and Find Full Text PDFHerein we report the synthesis of covalently functionalized carbon nano-onions (CNOs) via a reductive approach using unprecedented alkali-metal CNO intercalation compounds. For the first time, an Raman study of the controlled intercalation process with potassium has been carried out revealing a Fano resonance in highly doped CNOs. The intercalation was further confirmed by electron energy loss spectroscopy and X-ray diffraction.
View Article and Find Full Text PDFFew-layer MoS films are promising candidates for applications in numerous areas, such as photovoltaics, photocatalysis, nanotribology, lithium batteries, hydro-desulfurization catalysis and dry lubricants, especially due to their distinctive electronic, optical, and catalytic properties. In general, two alignments of MoS layers are possible - the horizontal and the vertical one, having different physicochemical properties. Layers of both orientations are conventionally fabricated by a sulfurization of pre-deposited Mo films.
View Article and Find Full Text PDFPorous single-layer molybdenum disulfide (MoS) is a promising material for applications such as DNA sequencing and water desalination. In this work, we introduce irradiation with highly charged ions (HCIs) as a new technique to fabricate well-defined pores in MoS. Surprisingly, we find a linear increase of the pore creation efficiency over a broad range of potential energies.
View Article and Find Full Text PDFElectron microscopy is a powerful tool for studying the properties of materials down to their atomic structure. In many cases, the quantitative interpretation of images requires simulations based on atomistic structure models. These typically use the independent atom approximation that neglects bonding effects, which may, however, be measurable and of physical interest.
View Article and Find Full Text PDF