Publications by authors named "Ursula Klingmuller"

Ductular reaction (DR) is the hallmark of cholestatic diseases manifested in the proliferation of bile ductules lined by biliary epithelial cells (BECs). It is commonly associated with an increased risk of fibrosis and liver failure. The receptor for advanced glycation end products (RAGE) was identified as a critical mediator of DR during chronic injury.

View Article and Find Full Text PDF

The Hippo pathway transducers yes-associated protein (YAP) and WW-domain containing transcription regulator 1 (WWTR1/TAZ) are key regulators of liver tumorigenesis, promoting tumor formation and progression. Although the first inhibitors are in clinical trials, targeting the relevant upstream regulators of YAP/TAZ activity could prove equally beneficial. To identify regulators of YAP/TAZ activity in hepatocarcinoma (HCC) cells, we carried out a proximity labelling approach (BioID) coupled with mass spectrometry.

View Article and Find Full Text PDF

Determining the label to target ratio, also known as the degree of labeling (DOL), is crucial for quantitative fluorescence microscopy and a high DOL with minimal unspecific labeling is beneficial for fluorescence microscopy in general. Yet robust, versatile and easy-to-use tools for measuring cell-specific labeling efficiencies are not available. Here we present a DOL determination technique named protein-tag DOL (ProDOL), which enables fast quantification and optimization of protein-tag labeling.

View Article and Find Full Text PDF

ALK-positive NSCLC patients demonstrate initial responses to ALK tyrosine kinase inhibitor (TKI) treatments, but eventually develop resistance, causing rapid tumor relapse and poor survival rates. Growing evidence suggests that the combination of drug and immune therapies greatly improves patient survival; however, due to the low immunogenicity of the tumors, ALK-positive patients do not respond to currently available immunotherapies. Tumor-associated macrophages (TAMs) play a crucial role in facilitating lung cancer growth by suppressing tumoricidal immune activation and absorbing chemotherapeutics.

View Article and Find Full Text PDF

Hemojuvelin (HJV) is a glycosylphosphatidylinositol-anchored protein of the repulsive guidance molecule family acting as a bone morphogenetic protein (BMP) coreceptor to induce the hepatic iron regulatory protein hepcidin. Hepcidin causes ubiquitination and degradation of the sole known iron exporter ferroportin, thereby limiting iron availability. The detailed signaling mechanism of HJV in vivo has yet to be investigated.

View Article and Find Full Text PDF

Precision oncology has revolutionized the treatment of ALK-positive lung cancer with targeted therapies. However, an unmet clinical need still to address is the treatment of refractory tumors that contain drug-induced resistant mutations in the driver oncogene or exhibit resistance through the activation of diverse mechanisms. In this study, we established mouse tumor-derived cell models representing the two most prevalent EML4-ALK variants in human lung adenocarcinomas and characterized their proteomic profiles to gain insights into the underlying resistance mechanisms.

View Article and Find Full Text PDF
Article Synopsis
  • Novel immunotherapies for lung cancer can reactivate the immune system for tumor cell killing, but many patients experience treatment failure, particularly women, possibly due to the immunosuppressive glycoprotein glycodelin.
  • Research shows that glycodelin from non-small-cell lung cancer (NSCLC) resembles that from amniotic fluid and interacts with immune cells, potentially affecting inflammatory responses and tumor dynamics.
  • High levels of glycodelin in tumors are linked to poor survival rates in female patients and may serve as a biomarker to identify those who won't benefit from immunotherapy, suggesting it could also be targeted for improved treatment options.
View Article and Find Full Text PDF

Chronic liver diseases are worldwide on the rise. Due to the rapidly increasing incidence, in particular in Western countries, metabolic dysfunction-associated steatotic liver disease (MASLD) is gaining importance as the disease can develop into hepatocellular carcinoma. Lipid accumulation in hepatocytes has been identified as the characteristic structural change in MASLD development, but molecular mechanisms responsible for disease progression remained unresolved.

View Article and Find Full Text PDF

Type I interferons (IFNs) play a central role not only in innate immunity against viral infection, but also in the antitumour response, e.g. through a direct impact on cell proliferation.

View Article and Find Full Text PDF

Background: Macrophages play an important role in maintaining liver homeostasis and regeneration. However, it is not clear to what extent the different macrophage populations of the liver differ in terms of their activation state and which other liver cell populations may play a role in regulating the same.

Methods: Reverse transcription PCR, flow cytometry, transcriptome, proteome, secretome, single cell analysis, and immunohistochemical methods were used to study changes in gene expression as well as the activation state of macrophages in vitro and in vivo under homeostatic conditions and after partial hepatectomy.

View Article and Find Full Text PDF

The human liver has a remarkable capacity to regenerate and thus compensate over decades for fibrosis caused by toxic chemicals, drugs, alcohol, or malnutrition. To date, no protective mechanisms have been identified that help the liver tolerate these repeated injuries. In this study, we revealed dysregulation of lipid metabolism and mild inflammation as protective mechanisms by studying longitudinal multi-omic measurements of liver fibrosis induced by repeated CCl injections in mice (n = 45).

View Article and Find Full Text PDF
Article Synopsis
  • Cancer cells are often resistant to redox-targeting drugs because doctors can't easily tell which patients will benefit, leading to issues in treatment.
  • Researchers found special markers in lung cancer cells called "antioxidant-capacity" biomarkers (ACB) that help identify which cancer cells are vulnerable to these drugs.
  • Interestingly, low ACB levels didn't mean high levels of harmful substances but instead showed that these cancer cells were growing fast, which could help find more patients who might successfully respond to treatment in studies.
View Article and Find Full Text PDF
Article Synopsis
  • Mass spectrometry-based proteomics is becoming more important in biology and medicine, highlighting the need for standardized quality control in data processing and analysis to ensure reliable results.
  • MSPypeline is a tool that helps import and process MaxQuant output, creating quality control reports and doing statistical analyses to identify differentially expressed proteins.
  • The source code for MSPypeline is available on GitHub, and benchmark data can be found on ProteomeXchange for further reference.
View Article and Find Full Text PDF

The abnormal tumor microenvironment (TME) often dictates the therapeutic response of cancer to chemo- and immuno-therapy. Aberrant expression of pericentromeric satellite repeats has been reported for epithelial cancers, including lung cancer. However, the transcription of tandemly repetitive elements in stromal cells of the TME has been unappreciated, limiting the optimal use of satellite transcripts as biomarkers or anti-cancer targets.

View Article and Find Full Text PDF

Metabolomic and proteomic analyses of human plasma and serum samples harbor the power to advance our understanding of disease biology. Pre-analytical factors may contribute to variability and bias in the detection of analytes, especially when multiple labs are involved, caused by sample handling, processing time, and differing operating procedures. To better understand the impact of pre-analytical factors that are relevant to implementing a unified proteomic and metabolomic approach in a clinical setting, we assessed the influence of temperature, sitting times, and centrifugation speed on the plasma and serum metabolomes and proteomes from six healthy volunteers.

View Article and Find Full Text PDF

Erythropoietin (Epo) ensures survival and proliferation of colony-forming unit erythroid (CFU-E) progenitor cells and their differentiation to hemoglobin-containing mature erythrocytes. A lack of Epo-induced responses causes embryonic lethality, but mechanisms regulating the dynamic communication of cellular alterations to the organismal level remain unresolved. By time-resolved transcriptomics and proteomics, we show that Epo induces in CFU-E cells a gradual transition from proliferation signature proteins to proteins indicative for differentiation, including heme-synthesis enzymes.

View Article and Find Full Text PDF

Breakdown of synthesis, excretion and detoxification defines liver failure. Post-hepatectomy liver failure (PHLF) is specific for liver resection and a rightfully feared complication due to high lethality and limited therapeutic success. Individual cytokine and growth factor profiles may represent potent predictive markers for recovery of liver function.

View Article and Find Full Text PDF

In health and disease, liver cells are continuously exposed to cytokines and growth factors. While individual signal transduction pathways induced by these factors were studied in great detail, the cellular responses induced by repeated or combined stimulations are complex and less understood. Growth factor receptors on the cell surface of hepatocytes were shown to be regulated by receptor interactions, receptor trafficking and feedback regulation.

View Article and Find Full Text PDF

Many physiological processes and pathological phenomena in the liver tissue are spatially heterogeneous. At a local scale, biomarkers can be quantified along the axis of the blood flow, from portal fields (PFs) to central veins (CVs), i.e.

View Article and Find Full Text PDF

Survival or apoptosis is a binary decision in individual cells. However, at the cell-population level, a graded increase in survival of colony-forming unit-erythroid (CFU-E) cells is observed upon stimulation with erythropoietin (Epo). To identify components of Janus kinase 2/signal transducer and activator of transcription 5 (JAK2/STAT5) signal transduction that contribute to the graded population response, we extended a cell-population-level model calibrated with experimental data to study the behavior in single cells.

View Article and Find Full Text PDF

The liver is the central hub for processing and maintaining homeostatic levels of dietary nutrients especially essential amino acids such as tryptophan (Trp). Trp is required not only to sustain protein synthesis but also as a precursor for the production of NAD, neurotransmitters and immunosuppressive metabolites. In light of these roles of Trp and its metabolic products, maintaining homeostatic levels of Trp is essential for health and well-being.

View Article and Find Full Text PDF

The induction of an interferon-mediated response is the first line of defense against pathogens such as viruses. Yet, the dynamics and extent of interferon alpha (IFNα)-induced antiviral genes vary remarkably and comprise three expression clusters: early, intermediate and late. By mathematical modeling based on time-resolved quantitative data, we identified mRNA stability as well as a negative regulatory loop as key mechanisms endogenously controlling the expression dynamics of IFNα-induced antiviral genes in hepatocytes.

View Article and Find Full Text PDF

Background: Availability of tumor material at baseline and disease progression is increasingly important for patient management in non-small-cell lung cancer (NSCLC), especially for the application of targeted therapies like tyrosine kinase inhibitors and for immune checkpoint inhibitor treatment. Here we report the experience of prospective biomaterial acquisition in advanced NSCLC from a pilot project.

Methods: Main objective was the longitudinal collection of high-quality, cryoconserved biopsies in addition to formalin-fixed paraffin-embedded (FFPE) biopsies required for routine diagnostics, along with blood samples and detailed clinical annotation using standardized questionnaires.

View Article and Find Full Text PDF

Cancer cells have a characteristic metabolism, mostly caused by alterations in signal transduction networks rather than mutations in metabolic enzymes. For metabolic drugs to be cancer-selective, signaling alterations need to be identified that confer a druggable vulnerability. Here, we demonstrate that many tumor cells with an acquired cancer drug resistance exhibit increased sensitivity to mechanistically distinct inhibitors of cancer metabolism.

View Article and Find Full Text PDF

Tightly interlinked feedback regulators control the dynamics of intracellular responses elicited by the activation of signal transduction pathways. Interferon alpha (IFNα) orchestrates antiviral responses in hepatocytes, yet mechanisms that define pathway sensitization in response to prestimulation with different IFNα doses remained unresolved. We establish, based on quantitative measurements obtained for the hepatoma cell line Huh7.

View Article and Find Full Text PDF