Publications by authors named "Ursula Just"

Brain metastasis leads to increased mortality and is a major site of relapse for several cancers, yet the molecular mechanisms of brain metastasis are not well understood. In this study, we established and characterized a new leukemic cell line, FIA10, that metastasizes into the central nervous system (CNS) following injection into the tail vein of syngeneic mice. Mice injected with FIA10 cells developed neurological symptoms such as loss of balance, tremor, ataxic gait and seizures, leading to death within 3 months.

View Article and Find Full Text PDF

The therapeutic effect of mesenchymal stromal cells (MSC) in tissue regeneration is based mainly on the secretion of bioactive molecules. Here, we report that the radioprotective effect of mouse bone marrow derived mesenchymal stromal cells (mMSC) can be attributed to extracellular vesicles (EV) released from mMSC. The transplantation of mMSC-derived EV into lethally irradiated mice resulted in long-term survival but no improvement in short-term reconstitution of the recipients.

View Article and Find Full Text PDF

Ischemic acute kidney injury (AKI) is associated with high morbidity and frequent complications. Repeated episodes of AKI may lead to end-stage renal failure. The pathobiology of regeneration in AKI is not well understood and there is no effective clinical therapy that improves regeneration.

View Article and Find Full Text PDF

Notch signaling is a key regulator of cell-fate decisions and is essential for proper neuroectodermal development. There, it favors the formation of ectoderm, promotes maintenance of neural stem cells, inhibits differentiation into neurons, and commits neural progenitors to a glial fate. In this report, we explore downstream effects of Notch important for astroglial differentiation.

View Article and Find Full Text PDF

Phosphatidylinositol-3-kinases (PI3Ks) exert a variety of signaling functions in eukaryotes. We suppressed the PI3K regulatory subunit p85α using a small interfering RNA (Pik3r1 siRNA) and examined the effects on embryoid body (EB) development in hanging drop culture. We observed a 150% increase in the volume of the treated EBs within 24 h, compared to the negative controls.

View Article and Find Full Text PDF

Notch receptor signaling controls cell-fate specification, self-renewal, differentiation, proliferation and apoptosis throughout development and regeneration in all animal species studied to date. Its dysfunction causes several developmental defects and diseases in the adult. A key feature of Notch signaling is its remarkable cell-context dependency.

View Article and Find Full Text PDF

Background: Notch receptor signaling controls developmental cell fates in a cell-context dependent manner. Although Notch signaling directly regulates transcription via the RBP-J/CSL DNA binding protein, little is known about the target genes that are directly activated by Notch in the respective tissues.

Methodology/principal Findings: To analyze how Notch signaling mediates its context dependent function(s), we utilized a Tamoxifen-inducible system to activate Notch1 in murine embryonic stem cells at different stages of mesodermal differentiation and performed global transcriptional analyses.

View Article and Find Full Text PDF

The conserved Rho-type GTPase Cdc42p is a key regulator of signal transduction and polarity in eukaryotic cells. In the yeast Saccharomyces cerevisiae, Cdc42p promotes polarized growth through the p21-activated kinases Ste20p and Cla4p. Previously, we demonstrated that Ste20p forms a complex with Erg4p, Cbr1p and Ncp1p, which all catalyze important steps in sterol biosynthesis.

View Article and Find Full Text PDF

In Saccharomyces cerevisiae, the Rho-type GTPase Cdc42 regulates polarized growth through its effectors, including the p21-activated kinases (PAKs) Ste20, Cla4, and Skm1. Previously, we demonstrated that Ste20 interacts with several proteins involved in sterol synthesis that are crucial for cell polarization. Under anaerobic conditions, sterols cannot be synthesized and need to be imported into cells.

View Article and Find Full Text PDF

The small guanosine triphosphate (GTP)-binding proteins of the Rho family are implicated in various cell functions, including establishment and maintenance of cell polarity. Activity of Rho guanosine triphosphatases (GTPases) is not only regulated by guanine nucleotide exchange factors and GTPase-activating proteins but also by guanine nucleotide dissociation inhibitors (GDIs). These proteins have the ability to extract Rho proteins from membranes and keep them in an inactive cytosolic complex.

View Article and Find Full Text PDF

Notch signaling is a highly conserved mechanism of intercellular communication that controls the developmental fate in all animal species studied to date. Specific transmembrane ligands activate Notch receptors on neighboring cells, thereby inducing proteolytic cleavage and nuclear translocation of the Notch intracellular domain (Notch(IC)). Notch(IC) associates with the transcriptional repressor RBP-J (recombination recognition sequence binding protein at the J kappa site), also known as CSL [CBF1/Su(H)/Lag-1], and converts it to an activator.

View Article and Find Full Text PDF

The Saccharomyces cerevisiae p21-activated kinase (PAK) Ste20 regulates various aspects of cell polarity during vegetative growth, mating and filamentous growth. To gain further insight into the mechanisms of Ste20 action, we screened for interactors of Ste20 using the split-ubiquitin system. Among the identified proteins were Erg4, Cbr1 and Ncp1, which are all involved in sterol biosynthesis.

View Article and Find Full Text PDF

Objective: In many developing tissues, signaling mediated by activation of the transmembrane receptor Notch influences cell-fate decisions, differentiation, proliferation, and cell survival. Notch receptors are expressed on hematopoietic cells and cognate ligands on bone marrow stromal cells. Here, we investigate the role of mNotch1 signaling in the control of erythroid differentiation of multipotent progenitor cells.

View Article and Find Full Text PDF

Signals of Notch transmembrane receptors function to regulate a wide variety of developmental cell fates. Here we investigate the role of Notch signaling in the development of mesodermal cell types by expressing a tamoxifen-inducible, activated form of Notch1 in embryonic stem cells (ESC). For differentiation of ESC into first mesodermal progenitor cells and then endothelial, mural, cardiac muscle and hematopoietic cells, the OP9 stroma co-culture system was used.

View Article and Find Full Text PDF

Objective: The acquisition of arterial or venous identity is highlighted in vascular development. Previously, we have reported an embryonic stem (ES) cell differentiation system that exhibits early vascular development using vascular endothelial growth factor (VEGF) receptor-2 (VEGFR2)-positive cells as common vascular progenitors. In this study, we constructively induced differentiation of arterial and venous endothelial cells (ECs) in vitro to elucidate molecular mechanisms of arterial-venous specification.

View Article and Find Full Text PDF

We and others have shown that infection of dendritic cells with murine cytomegalovirus (MCMV) leads to severe functional impairment of these antigen-presenting cells (D. M. Andrews, C.

View Article and Find Full Text PDF

Oxygen radicals regulate many physiological processes, such as signaling, proliferation, and apoptosis, and thus play a pivotal role in pathophysiology and disease development. There are at least two thioredoxin reductase/thioredoxin/peroxiredoxin systems participating in the cellular defense against oxygen radicals. At present, relatively little is known about the contribution of individual enzymes to the redox metabolism in different cell types.

View Article and Find Full Text PDF

Hemopoietic commitment is initiated by and depends on activation of transcription factors. However, it is unclear whether activation of lineage-affiliated transcription factors is extrinsically regulated by to date unknown agents or is the result of a cell autonomous program. Here we show that signaling by the Notch1 transmembrane receptor instructively induces myeloid differentiation of multipotent hemopoietic progenitor cells and concomitantly up-regulates the expression of the transcription factor PU.

View Article and Find Full Text PDF

The aim of this study is to analyze the dynamics of the mouse cytomegalovirus (MCMV)-dendritic cell (DC) interaction. Immature and mature DCs derived from the mouse stem cell line factor-dependent cell Paterson mixed potential were infected with a recombinant MCMV expressing green fluorescent protein. Infection of immature DCs resulted in DC activation and virus production, both of which may contribute to viral dissemination.

View Article and Find Full Text PDF

The transcription factor recombination signal sequence-binding protein Jkappa (RBP-J) is a key downstream element in the signaling pathway of all four mammalian Notch receptors that are critically involved in the control of embryonic and adult development. RBP-J-deficient mice display complex defects and die around day 9.5 postcoitum.

View Article and Find Full Text PDF

Objectives: The Ets-family transcription factor PU.1 is expressed specifically in the hematopoietic system, in which it is absolutely required for the generation of B lymphocytes and macrophages. In contrast, overexpression of PU.

View Article and Find Full Text PDF

Dogs are used in preclinical transplantation models to study methods of allogeneic bone marrow transplantation (BMT). The evaluation of chimerism is of major significance for the investigation of graft-vs.-host (GvH) and host-vs.

View Article and Find Full Text PDF