Unlabelled: The polymorphism, KLF6-IVS1-27A, in the Krüppel-like factor 6 (KLF6) transcription factor gene enhances its splicing into antagonistic isoforms and is associated with delayed histological progression of nonalcoholic fatty liver disease (NAFLD). To explore a potential role for KLF6 in the development of insulin resistance, central to NAFLD pathogenesis, we genotyped KLF6-IVS1-27 in healthy subjects and assayed fasting plasma glucose (FPG) and insulin sensitivities. Furthermore, we quantified messenger RNA (mRNA) expression of KLF6 and glucokinase (GCK), as an important mediator of insulin sensitivity, in human livers and in liver tissues derived from a murine Klf6 knockdown model (DeltaKlf6).
View Article and Find Full Text PDFUnlabelled: Although hepatic fibrosis typically follows chronic inflammation, fibrosis will often regress after cessation of liver injury. In this study, we examined whether liver dendritic cells (DCs) play a role in liver fibrosis regression using carbon tetrachloride to induce liver injury. We examined DC dynamics during fibrosis regression and their capacity to modulate liver fibrosis regression upon cessation of injury.
View Article and Find Full Text PDFUnlabelled: Among several single-nucleotide polymorphisms (SNPs) that correlate with fibrosis progression in chronic HCV, an SNP in the antizyme inhibitor (AzI) gene is most strongly associated with slow fibrosis progression. Our aim was to identify the mechanism(s) underlying this observation by exploring the impact of the AzI SNP on hepatic stellate cell (HSC) activity. Seven novel AZIN1 splice variants ("SV2-8") were cloned by polymerase chain reaction from the LX2 human HSC line.
View Article and Find Full Text PDFUnlabelled: Inactivation of KLF6 is common in hepatocellular carcinoma (HCC) associated with hepatitis C virus (HCV) infection, thereby abrogating its normal antiproliferative activity in liver cells. The aim of the study was to evaluate the impact of KLF6 depletion on human HCC and experimental hepatocarcinogenesis in vivo. In patients with surgically resected HCC, reduced tumor expression of KLF6 was associated with decreased survival.
View Article and Find Full Text PDFMultiple etiologies of liver disease lead to liver fibrosis through integrated signaling networks that regulate the deposition of extracellular matrix. This cascade of responses drives the activation of hepatic stellate cells (HSCs) into a myofibroblast-like phenotype that is contractile, proliferative and fibrogenic. Collagen and other extracellular matrix (ECM) components are deposited as the liver generates a wound-healing response to encapsulate injury.
View Article and Find Full Text PDFBackground: Activin receptor-like kinase 1 (ALK1) is a Transforming Growth Factor-beta (TGF-beta) receptor type I, mainly expressed in endothelial cells that plays a pivotal role in vascular remodelling and angiogenesis. Mutations in the ALK1 gene (ACVRL1) give rise to Hereditary Haemorrhagic Telangiectasia, a dominant autosomal vascular dysplasia caused by a haploinsufficiency mechanism. In spite of its patho-physiological relevance, little is known about the transcriptional regulation of ACVRL1.
View Article and Find Full Text PDFThe tumor suppressor Kruppel-like factor 6 (KLF6) is frequently inactivated in hepatocellular carcinoma (HCC). To unearth downstream transcriptional targets of KLF6, cDNA microarray analysis of whole liver was compared between KLF6+/+ and KLF6+/- mice. Pituitary tumor transforming gene 1 (PTTG1), an oncogene, was the most up-regulated transcript in KLF6+/- liver.
View Article and Find Full Text PDF