Publications by authors named "Ursula B Priefer"

In order to study the effects of soil factors and bacterial inoculation on alfalfa (Medicago sativa), plants were inoculated with Ensifer meliloti L33 and Azospirillum brasilense Sp7 in pot experiments using two different soils separately as well as in a mixture. One soil was contaminated with chemical waste products; the other was an arable soil. Soil factors, including the availability of macro- and micronutrients as well as carbon and nitrogen contents, were found to exhibit a much greater influence on the growth of alfalfa than any of the inoculations.

View Article and Find Full Text PDF

A group-specific primer set was developed using nodC as a target gene for the amplification of rhizobial sequence diversity from nodule isolates and total soil DNA preparations. The primer set was tested on 209 nodule isolates, recovered from six different trap plant species which were grown in two soil samples collected from a chickpea and a wheat field site in India. We also amplified and cloned PCR products from total DNA isolated from the same soil samples.

View Article and Find Full Text PDF

The Rhizobium leguminosarum bv. viciae VF39 FixL protein belongs to a distinct group of hybrid regulatory sensor proteins that bear a covalently linked C-terminal receiver domain. FixL has an unorthodox histidine kinase domain, which is shared with many other hybrid regulators.

View Article and Find Full Text PDF

A Rhizobium leguminosarum bv. viciae VF39 gene (gabT) encoding a gamma-aminobutyrate (GABA) aminotransferase was identified, cloned and characterized. This gene is thought to be involved in GABA metabolism via the GABA shunt pathway, a theoretical bypass of the 2-oxoglutarate dehydrogenase complex.

View Article and Find Full Text PDF

A Rhizobium leguminosarum bv. viciae VF39 gene (glnD) encoding the uridylyltransferase/uridylyl-removing enzyme, which constitutes the sensory component of the nitrogen regulation (ntr) system, was identified, cloned and characterized. The deduced amino acid sequence contains the conserved active site motif of the nucleotidyltransferase superfamily and is highly homologous to the glnD gene products of other bacterial species.

View Article and Find Full Text PDF