Herpes simplex virus 1 and 2 infections cause high unmet disease burdens worldwide. Mainly HSV-2 causes persistent sexually transmitted disease, fatal neonatal disease and increased transmission of HIV/AIDS. Thus, there is an urgent requirement to develop effective vaccines.
View Article and Find Full Text PDFMembers of the family have enveloped, spherical virions with characteristic complex structures consisting of symmetrical and non-symmetrical components. The linear, double-stranded DNA genomes of 125-241 kbp contain 70-170 genes, of which 43 have been inherited from an ancestral herpesvirus. In general, herpesviruses have coevolved with and are highly adapted to their hosts, which comprise many mammalian, avian and reptilian species.
View Article and Find Full Text PDFThe genomic characteristics of human cytomegalovirus (HCMV) strains sequenced directly from clinical pathology samples were investigated, focusing on variation, multiple-strain infection, recombination, and gene loss. A total of 207 datasets generated in this and previous studies using target enrichment and high-throughput sequencing were analyzed, in the process enabling the determination of genome sequences for 91 strains. Key findings were that (i) it is important to monitor the quality of sequencing libraries in investigating variation; (ii) many recombinant strains have been transmitted during HCMV evolution, and some have apparently survived for thousands of years without further recombination; (iii) mutants with nonfunctional genes (pseudogenes) have been circulating and recombining for long periods and can cause congenital infection and resulting clinical sequelae; and (iv) intrahost variation in single-strain infections is much less than that in multiple-strain infections.
View Article and Find Full Text PDFBackground: In developed countries, human cytomegalovirus (HCMV) is a major pathogen in congenitally infected and immunocompromised individuals, where multiple-strain infection appears linked to disease severity. The situation is less documented in developing countries. In Zambia, breast milk is a key route for transmitting HCMV and carries higher viral loads in human immunodeficiency virus (HIV)-infected women.
View Article and Find Full Text PDFTissue-culture adaptation of viruses can modulate infection. Laboratory passage and bacterial artificial chromosome (BAC)mid cloning of human cytomegalovirus, HCMV, resulted in genomic deletions and rearrangements altering genes encoding the virus entry complex, which affected cellular tropism, virulence, and vaccine development. Here, we analyse these effects on the reference genome for related betaherpesviruses, Roseolovirus, human herpesvirus 6A (HHV-6A) strain U1102.
View Article and Find Full Text PDFNew antivirals are required to prevent rising antimicrobial resistance from replication inhibitors. The aim of this study was to analyse the range of emerging mutations in herpesvirus by whole genome deep sequencing. We tested human herpesvirus 6 treatment with novel antiviral K21, where evidence indicated distinct effects on virus envelope proteins.
View Article and Find Full Text PDFBackground: Breastfeeding imparts beneficial immune protection and nutrition to infants for healthy growth, but it is also a route for human immunodeficiency virus (HIV) and human cytomegalovirus (HCMV) infection. In previous studies, we showed that HCMV adversely affects infant development in Africa, particularly with maternal HIV exposure. In this study, we analyzed infants risks for acquisition of HCMV infection from breastfeeding and compared HIV-positive and HIV-negative mothers.
View Article and Find Full Text PDFHuman herpesvirus-6A and B (HHV-6A, HHV-6B) have recently defined endogenous genomes, resulting from integration into the germline: chromosomally-integrated "CiHHV-6A/B". These affect approximately 1.0% of human populations, giving potential for virus gene expression in every cell.
View Article and Find Full Text PDFShortly after the discovery of human herpesvirus 6 (HHV-6), two distinct variants, HHV-6A and HHV-6B, were identified. In 2012, the International Committee on Taxonomy of Viruses (ICTV) classified HHV-6A and HHV-6B as separate viruses. This review outlines several of the documented epidemiological, biological, and immunological distinctions between HHV-6A and HHV-6B, which support the ICTV classification.
View Article and Find Full Text PDFBackground: Maternally HIV-exposed (mHIV-EU) infants have poor health even without HIV-1 infection. The responses to vaccination are less well defined. Immunity to oral Poliovirus vaccine (OPV) was studied in Zambian infants participating in a randomised controlled trial of micronutrient fortification to improve child health.
View Article and Find Full Text PDFBackground: Herpesviruses have evolved chemokines and chemokine receptors, which modulate the recruitment of human leukocytes during the inflammatory response to infection. Early post-infection, human herpesvirus 6A (HHV-6A) infected cells express the chemokine receptor U51A and chemokine U83A which have complementary effects in subverting the CC-chemokine family thereby controlling anti-viral leukocyte recruitment. Here we show that, to potentiate this activity, the viral chemokine can also avoid clearance by scavenger chemokine receptors, DARC and D6, which normally regulate an inflammatory response.
View Article and Find Full Text PDFHuman herpesvirus 6, HHV-6, commonly infects children, causing febrile illness and can cause more severe pathology, especially in an immune compromised setting. There are virulence distinctions between variants HHV-6A and B, with evidence for increased severity and neurotropism for HHV-6A. While HHV-6B is the predominant infant infection in USA, Europe and Japan, HHV-6A appears rare.
View Article and Find Full Text PDFHuman herpesvirus-6A (HHV-6A) betachemokine-receptor U51A binds inflammatory modulators CCL2, CCL5, CCL11, CCL7, and CCL13. This unique specificity overlaps that of human chemokine receptors CCR1, CCR2, CCR3, and CCR5. In model cell lines, expression leads to CCL5 down-regulation with both constitutive and inducible signaling.
View Article and Find Full Text PDFHIV-1 strains use C-C-chemokine receptor 5, CCR5, as a coreceptor for host transmission. Human CCR5 chemokine ligands inhibit binding and infection, whereas CCR5 mutations also inhibit infection by preventing surface expression, resulting in delayed progression to AIDS. Here, we describe a human herpesvirus 6 (HHV-6A) chemokine, U83A, which binds CCR5 with higher affinity than human chemokines, displacing their binding and leading to inhibition of chemotaxis of human leukocytes.
View Article and Find Full Text PDFHuman herpesvirus 6 (HHV-6) is the only human herpesvirus encoding U94/rep, homologue to the parvovirus non-structural gene rep68/78. Results to date suggest that HHV-6 U94/rep might regulate viral gene expression and have a role in viral latency. To determine the effect of U94/REP upon viral replication, the protein was produced.
View Article and Find Full Text PDFLeukotropic human herpesvirus 6 (HHV-6) establishes a persistent infection associated with inflammatory diseases and encodes chemokines that could chemoattract leukocytes for infection or inflammation. HHV-6 variant A encodes a distant chemokine homolog, U83A, and a polymorphism promoting a secreted form was identified. U83A and three N-terminal modifications were expressed and purified, and activities were compared with a spliced truncated isoform, U83A-Npep.
View Article and Find Full Text PDFThe human herpes virus 6 (HHV-6)-encoded chemokine receptor U51 constitutively activates phospholipase C (PLC) and inhibits cAMP-responsive element (CRE)-mediated gene transcription via the activation of G(q/11) proteins. Yet, chemokines known to bind U51 differentially regulate U51 coupling to G proteins. CCL5/RANTES induced pertussis toxin (PTX)-insensitive increases in PLC activity and changes in intracellular free calcium concentration ([Ca2+]i), whereas both CCL2/MCP-1 and CCL11/eotaxin failed to stimulate PLC activity or increase [Ca2+]i.
View Article and Find Full Text PDFA cell fusion assay using fusion-from-without (FFWO) recombinant adenoviruses (RAds) and specific antibody showed a role in fusion modulation for glycoprotein gO, the recently identified third component of the gH/gL gCIII complex of human cytomegalovirus (HCMV). As in HCMV, RAd gO expressed multiple glycosylated species with a mature product of 125 kDa. Coexpression with gH/gL RAds showed gCIII reconstitution in the absence of other HCMV products and stabilisation by intermolecular disulfide bonds.
View Article and Find Full Text PDF