Cathepsins, a family of lysosomal peptidases, play a crucial role in maintaining cellular homeostasis by regulating protein turnover and degradation as well as many specific regulatory actions that are important for proper cell function and human health. Alterations in the activity and expression of cathepsins have been observed in many diseases such as cancer, inflammation, neurodegenerative disorders, bone remodelling-related conditions and others. These changes are not exclusively harmful, but rather appear to be a compensatory response on the lack of one cathepsin in order to maintain tissue integrity.
View Article and Find Full Text PDFGlioblastoma (GBM) is the most common and deadly primary brain tumor in adults. Understanding GBM pathobiology and discovering novel therapeutic targets are critical to finding efficient treatments. Upregulation of the lysosomal cysteine carboxypeptidase cathepsin X has been linked to immune dysfunction and neurodegenerative diseases, but its role in cancer and particularly in GBM progression in patients is unknown.
View Article and Find Full Text PDFNew therapeutic targets that could improve current antitumor therapy and overcome cancer resistance are urgently needed. Promising candidates are lysosomal cysteine cathepsins, proteolytical enzymes involved in various critical steps during cancer progression. Among them, cathepsin X, which acts solely as a carboxypeptidase, has received much attention.
View Article and Find Full Text PDFModern anticancer therapies favor a targeted approach. Tyrosine kinase inhibitors (TKIs) are drugs that target molecular pathways involved in various types of malignancies. Although TKIs are safe and well tolerated, they remain not completely selective; e.
View Article and Find Full Text PDFEndocrine disrupting chemicals (EDCs) are associated with cancer development and progression due to their promotion of increased cell invasiveness and metastasis formation. However, the effects of EDCs on cell adhesion mediated through integrins have not been well studied to date. Their actions are implicated by binding sites for hormones on the vitronectin receptor (VTNR; or integrin αβ), which is involved in tumor angiogenesis and metastasis.
View Article and Find Full Text PDFCysteine cathepsins are primarily involved in the degradation and recycling of proteins in endo-lysosomal compartments but are also gaining recognition as pivotal proteolytic contributors to various immune functions. Through their extracellular proteolytic activities within the hematopoietic stem cell niche, they are involved in progenitor cell mobilization and differentiation. Cysteine cathepsins, such as cathepsins L and S contribute to antigen-induced adaptive immunity through major histocompatibility complex class II antigen presentation whereas cathepsin X regulates T-cell migration.
View Article and Find Full Text PDFOver the last 2 decades, several coronaviruses (CoVs) have crossed the species barrier into humans, causing highly prevalent and severe respiratory diseases, often with fatal outcomes. CoVs are a large group of enveloped, single-stranded, positive-sense RNA viruses, which encode large replicase polyproteins that are processed by viral peptidases to generate the nonstructural proteins (Nsps) that mediate viral RNA synthesis. Papain-like peptidases (PLPs) and chymotrypsin-like cysteine 3C-like peptidase are essential for coronaviral replication and represent attractive antiviral drug targets.
View Article and Find Full Text PDFIncreased proteolytic activity of cysteine cathepsins has long been known to facilitate malignant progression, and it has also been associated with tumor-promoting roles of myeloid-derived suppressor cells (MDSCs). Consequently, cysteine cathepsins have gained much attention as potential targets for cancer therapies. However, cross-talk between tumor cells and MDSCs needs to be taken into account when studying the efficacy of cathepsin inhibitors as anti-cancer agents.
View Article and Find Full Text PDFCathepsin X is a cysteine carboxypeptidase that is involved in various physiological and pathological processes. In particular, highly elevated expression and activity of cathepsin X has been observed in cancers and neurodegenerative diseases. Previously, we identified compound Z9 (1-(2,3-dihydrobenzo[b][1,4]dioxin-6-yl)-2-((4-isopropyl-4H-1,2,4-triazol-3-yl)thio)ethan-1-one) as a potent and specific reversible cathepsin X inhibitor.
View Article and Find Full Text PDFCancer Immunol Immunother
February 2020
Cathepsins are lysosomal peptidases involved in intracellular protein catabolism as well as in various other physiological and pathological processes. Several members of the family, most notably cathepsins B, S, K and L, are frequently overexpressed in cancer and have been associated with remodeling of the proteins of the extracellular matrix, a process leading to tumor cell migration, invasion and metastasis. In addition, lysosomal cathepsins play a role in innate and adaptive immunity, regulation of antigen presentation, Toll-like receptor signaling, cytokine secretion, apoptosis, autophagy, differentiation, migration and cytotoxicity.
View Article and Find Full Text PDFCysteine cathepsins are peptidases with housekeeping functions that play different specific roles in different tissues. Endogenous peptidase inhibitors, such as cystatins and thyropins are the ultimate way of controlling their activity. It appears, however, that cathepsin X, a monocarboxypeptidase, whose overexpression is associated with several pathological processes, is not under the control of endogenous inhibitors.
View Article and Find Full Text PDFBackground: We tested the hypothesis that increased levels of cathepsin S and decreased levels of cystatin C in plasma at the time of percutaneous transluminal angioplasty (PTA) are associated with the occurrence of 6-months' restenosis of the femoropopliteal artery (FPA).
Methods: 20 patients with restenosis and 24 matched patients with patent FPA after a 6-months follow-up were in - cluded in this study. They all exhibited disabling claudication or critical limb ischemia and had undergone technically successful PTA.
Targeted covalent inhibitors have become an integral part of a number of therapeutic protocols and are the subject of intense research. The mechanism of action of these compounds involves the formation of a covalent bond with protein nucleophiles, mostly cysteines. Given the abundance of cysteines in the proteome, the specificity of the covalent inhibitors is of utmost importance and requires careful optimization of the applied warheads.
View Article and Find Full Text PDFCathepsin X is a cysteine peptidase involved in the progression of cancer and neurodegenerative diseases. Targeting this enzyme with selective inhibitors opens a new possibility for intervention in several therapeutic areas. In this study triazole-based reversible and selective inhibitors of cathepsin X have been identified.
View Article and Find Full Text PDFEur J Cell Biol
September 2017
Cathepsins B and X are lysosomal cysteine carboxypeptidases suggested as having a redundant role in cancer. They are involved in a number of processes leading to tumor progression but their role in the epithelial-mesenchymal transition (EMT) remains unknown. We have investigated the contribution of both cathepsins B and X in EMT using tumor cell lines differing in their expression of epithelial and mesenchymal markers and cell morphology.
View Article and Find Full Text PDFCathepsin X, a cysteine carboxypeptidase, is upregulated in several types of cancer. Its molecular target in tumor cells is profilin 1, a known tumor suppressor and regulator of actin cytoskeleton dynamics. Cathepsin X cleaves off the C-terminal Tyr139 of profilin 1, affecting binding of poly-L-proline ligands and, consequently, tumor cell migration and invasion.
View Article and Find Full Text PDFCathepsin X is a cysteine carboxypeptidase, localized predominantly in immune cells, regulating their proliferation, maturation, migration and adhesion. It has recently been confirmed as a significant promoter of malignant progression. Its role in signal transduction was first implied through the interaction with integrin receptors, either by binding with the RGD motif or by proteolytic cleavage of the C-terminal amino acids of the cytosolic part of the integrin beta chain.
View Article and Find Full Text PDFAim: We hypothesized that, in stable angina patients, atorvastatin therapy lowers the cathepsin S (CTSS) concentrations, as assessed non-invasively according to a plasma analysis. In addition, the low-density lipoprotein (LDL) and high-density lipoprotein (HDL) size and subclasses in the plasma were analysed to establish the association between CTSS and lipoprotein metabolism and determine whether this association is atorvastatin-sensitive.
Methods: A total of 43 patients with stable angina received atorvastatin therapy (20 mg/day, 10 weeks).
CX3CL1 chemokine (fractalkine) is highly expressed by vascular smooth muscle cells (VSMCs) in atherosclerotic lesions. Its membrane-bound form promotes cell-cell interactions, whereas the soluble form induces chemotaxis of CX3CR1- expressing leukocytes. We show that the cysteine protease cathepsin S, expressed by VSMCs, is able to cleave membrane-anchored CX3CL1, releasing a 55-kDa fragment to the medium, thus regulating the adhesion of VSMCs and the capture of monocytes to the sites of atherogenesis.
View Article and Find Full Text PDFCathepsin X has been reported to be a tumor promotion factor in various types of cancer; however, the molecular mechanisms linking its activity with malignant processes are not understood. Here we present profilin 1, a known tumor suppressor, as a target for cathepsin X carboxypeptidase activity in prostate cancer PC-3 cells. Profilin 1 co-localizes strongly with cathepsin X intracellularly in the perinuclear area as well as at the plasma membrane.
View Article and Find Full Text PDFThe cytoskeletal protein talin, an actin- and β-integrin tail-binding protein, plays an important role in cell migration by promoting integrin activation and focal adhesion formation. Here, we show that talin is a substrate for cathepsin H (CtsH), a lysosomal cysteine protease with a strong aminopeptidase activity. Purified active CtsH sequentially cleaved a synthetic peptide representing the N terminus of the talin F0 head domain.
View Article and Find Full Text PDFPodosomes, specialized actin-rich structures in macrophages (Mfs), degrade the extra-cellular matrix (ECM) and are involved in cell migration. On two-dimensional (2D) surfaces Mfs form spot-like podosomes at the ventral cell surface that develop into protrusive structures in a three-dimensional (3D) environment resembling the ECM. We have shown that the tips of these protrusive podosomes are characterized by increased accumulation of cysteine cathepsins (Cts) B, X, S, H, and L, both in human blood Mfs and in human monocytic cell line U-937.
View Article and Find Full Text PDFSmall ubiquitin-related modifier (SUMO) is implicated in the regulation of numerous biological processes including transcription, protein localization, and cell cycle control. Protein modification by SUMO is found in Plasmodium falciparum; however, its role in the regulation of the parasite life cycle is poorly understood. Here we describe functional studies of a SUMO-specific protease (SENP) of P.
View Article and Find Full Text PDFThe motility of T cells depends on the dynamic spatial regulation of integrin-mediated adhesion and de-adhesion. Cathepsin X, a cysteine protease, has been shown to regulate T-cell migration by interaction with lymphocyte function associated antigen-1 (LFA-1). LFA-1 adhesion to the ICAM-1 is controlled by the association of actin-binding proteins with the cytoplasmic tail of the beta(2) chain of LFA-1.
View Article and Find Full Text PDF