A conceptual study has been carried out on laser station networks to enhance Space Situational Awareness and contribute to collision avoidance in the low Earth orbit by high-precision laser tracking of debris objects and momentum transfer via photon pressure from ground-based high-power lasers. Depending on the network size, geographical distribution of stations, orbit parameters, and remaining time to conjunction, multipass irradiation enhances the efficiency of photon momentum coupling by 1-2 orders of magnitude and has the potential to eventually yield a promisingly significant reduction of the collision rate in low Earth orbit.
View Article and Find Full Text PDFAbsolute rotation rate sensing with extreme sensitivity requires a combination of several large scale gyroscopes in order to obtain the full vector of rotation. We report on the construction and operation of a four-component, tetrahedral laser gyroscope array as large as a five story building and situated in a near surface, underground laboratory. It is demonstrated that reconstruction of the full Earth rotation vector can be achieved with sub-arcsecond resolution over more than six weeks.
View Article and Find Full Text PDFThe time-difference-of-arrival (TDOA) self-calibration is an important topic for many applications, such as indoor navigation. One of the most common methods is to perform nonlinear optimization. Unfortunately, optimization often gets stuck in a local minimum.
View Article and Find Full Text PDFIn this work we introduce a relative localization method that estimates the coordinate frame transformation between two devices based on distance measurements. We present a linear algorithm that calculates the relative pose in 2D or 3D with four degrees of freedom (4-DOF). This algorithm needs a minimum of five or six distance measurements, respectively, to estimate the relative pose uniquely.
View Article and Find Full Text PDFThe position accuracy based on Decawave Ultra-Wideband (UWB) is affected mainly by three factors: hardware delays, clock drift, and signal power. This article discusses the last two factors. The general approach to clock drift correction uses the phase-locked loop (PLL) integrator, which we show is subject to signal power variations, and therefore, is less suitable for clock drift correction.
View Article and Find Full Text PDFIn this paper, we present our novel approach for the crowdsourced dynamic vertical mapping of buildings. For achieving this, we use the barometric sensor of smartphones to estimate altitude differences and the moment of the outdoor to indoor transition to extract reference pressure. We have identified the outdoor-indoor transition (OITransition) via the fusion of four different sensors.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
March 2010
The development of techniques for the comparison of distant clocks and for the distribution of stable and accurate time scales has important applications in metrology and fundamental physics research. Additionally, the rapid progress of frequency standards in the optical domain is presently demanding additional efforts for improving the performances of existing time and frequency transfer links. Present clock comparison systems in the microwave domain are based on GPS and two-way satellite time and frequency transfer (TWSTFT).
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
July 2006
We address two issues that limit the quality of time and frequency transfer by carrier phase measurements from the Global Positioning System (GPS). The first issue is related to inconsistencies between code and phase observations. We describe and classify several types of events that can cause inconsistencies and observe that some of them are related to the internal clock of the GPS receiver.
View Article and Find Full Text PDF