Publications by authors named "Uros Tkalec"

Unlabelled: Magnetocontrollable droplet mobility on surfaces of both solids and simple fluids have been widely used in a wide range of applications. However, little is understood about the effect of the magnetic field on the wettability and mobility of droplets on structured fluids. Here, we report the manipulation of the dynamic behaviors of water droplets on a film of thermotropic liquid crystals (LCs).

View Article and Find Full Text PDF

The ability to control both the mobility and chemical compositions of microliter-scale aqueous droplets is an essential prerequisite for next-generation open surface microfluidics. Independently manipulating the chemical compositions of aqueous droplets without altering their mobility, however, remains challenging. In this work, we address this challenge by designing a class of open surface microfluidic platforms based on thermotropic liquid crystals (LCs).

View Article and Find Full Text PDF

Achiral building blocks forming achiral structures is a common occurrence in nature, while chirality emerging spontaneously from an achiral system is usually associated with important scientific phenomena. We report on the spontaneous chiral symmetry-breaking phenomena upon the topographic confinement of achiral lyotropic chromonic liquid crystals in periodically arranged micrometer scale air pillars. The anisotropic fluid arranges into chiral domains that depend on the arrangement and spacing of the pillars.

View Article and Find Full Text PDF

Compared to isotropic liquids, orientational order of nematic liquid crystals makes their rheological properties more involved, and thus requires fine control of the flow parameters to govern the orientational patterns. In microfluidic channels with perpendicular surface alignment, nematics discontinuously transition from perpendicular structure at low flow rates to flow-aligned structure at high flow rates. Here we show how precise tuning of the driving pressure can be used to stabilize and manipulate a previously unresearched topologically protected chiral intermediate state which arises before the homeotropic to flow-aligned transition.

View Article and Find Full Text PDF

Pure liquids in thermodynamic equilibrium are structurally homogeneous. In liquid crystals, flow and light pulses are used to create reconfigurable domains with polar order. Moreover, through careful engineering of concerted microfluidic flows and localized optothermal fields, it is possible to achieve complete control over the nucleation, growth, and shape of such domains.

View Article and Find Full Text PDF

Topological defects in the orientational order that appear in thin slabs of a nematic liquid crystal, as seen in the standard schlieren texture, behave as a random quasi-two-dimensional system with strong optical birefringence. We present an approach to creating and controlling the defects using air pillars, trapped by micropatterned holes in the silicon substrate. The defects are stabilized and positioned by the arrayed air pillars into regular two-dimensional lattices.

View Article and Find Full Text PDF

Nematic braids are reconfigurable knots and links formed by the disclination loops that entangle colloidal particles dispersed in a nematic liquid crystal. We focus on entangled nematic disclinations in thin twisted nematic layers stabilized by 2D arrays of colloidal particles that can be controlled with laser tweezers. We take the experimentally assembled structures and demonstrate the correspondence of the knot invariants, constructed graphs, and surfaces associated with the disclination loop to the physically observable features specific to the geometry at hand.

View Article and Find Full Text PDF

We explore the flow of a nematic liquid crystal in microfluidic channels with a rectangular cross section through experiments and numerical modeling. The flow profile and the liquid crystal orientational profile show three distinct regimes of weak, medium, and strong flow as the driving pressure is varied. These are identified by comparing polarizing optical microscopy experiments and numerical solutions of the nematofluidic equations of motion.

View Article and Find Full Text PDF

Tying knots and linking microscopic loops of polymers, macromolecules, or defect lines in complex materials is a challenging task for material scientists. We demonstrate the knotting of microscopic topological defect lines in chiral nematic liquid-crystal colloids into knots and links of arbitrary complexity by using laser tweezers as a micromanipulation tool. All knots and links with up to six crossings, including the Hopf link, the Star of David, and the Borromean rings, are demonstrated, stabilizing colloidal particles into an unusual soft matter.

View Article and Find Full Text PDF

Using an atomic force microscopy, we have measured the separation dependence of the force between an atomically flat mica sheet and a micrometer-sized glass sphere immersed in the nematic liquid crystal. As the mica surface induces a strong parallel alignment and the treated glass sphere induces a strong perpendicular alignment on the liquid crystal, a repulsive force is observed due to the elastically deformed nematic liquid crystal. We observe that below a critical separation d(th) approximately 10 nm, the system undergoes a structural transition, thus relaxing the distortion.

View Article and Find Full Text PDF

The ability to generate regular spatial arrangements of particles is an important technological and fundamental aspect of colloidal science. We showed that colloidal particles confined to a few-micrometer-thick layer of a nematic liquid crystal form two-dimensional crystal structures that are bound by topological defects. Two basic crystalline structures were observed, depending on the ordering of the liquid crystal around the particle.

View Article and Find Full Text PDF