This study enhances the bioactivity of polycaprolactone (PCL) scaffolds for tissue engineering by functionalizing them with oxidized hyaluronic acid glycine-peptide conjugates to improve endothelial cell adhesion and growth. Hyaluronic acid was conjugated with a glycine-peptide to create a bioactive interface on PCL (static water contact angle, SCA(HO): 98°). The scaffolds were fabricated using a melt extrusion 3D printing technique.
View Article and Find Full Text PDFKidney diseases are among the leading causes of death globally. With the increasing rates of acute kidney injury (AKI) requiring hospitalisation, a better understanding of pathophysiological mechanisms is needed to treat the patients more efficiently. Nephrotoxicity is one of the most common causes of AKI, mainly due to the high availability of over-the-counter drugs and natural supplements, which may interact with prescribed drugs at the level of pharmacokinetics, among other factors.
View Article and Find Full Text PDFMineralocorticoid receptor antagonists (MRAs) are one of the renin-angiotensin-aldosterone system inhibitors widely used in clinical practice. While spironolactone and eplerenone have a long-standing profile in clinical medicine, finerenone is a novel agent within the MRA class. It has a higher specificity for mineralocorticoid receptors, eliciting less pronounced adverse effects.
View Article and Find Full Text PDFExamining the critical role of anticoagulants in medical practice, particularly their central function in preventing abnormal blood clotting, is of the utmost importance. However, the study of interactions between blood proteins and alternative anticoagulant nano-surfaces is still understood poorly. In this study, novel approach involving direct functionalisation of magnetic iron oxide nanoparticles (MNPs) as carriers with sulphated dextran (s-dext) is presented, with the aim of evaluating the potential of magnetically-responsive MNPs@s-dext as anticoagulants.
View Article and Find Full Text PDFSkin in vitro models offer much promise for research, testing drugs, cosmetics, and medical devices, reducing animal testing and extensive clinical trials. There are several in vitro approaches to mimicking human skin behavior, ranging from simple cell monolayer to complex organotypic and bioengineered 3-dimensional models. Some have been approved for preclinical studies in cosmetics, pharmaceuticals, and chemicals.
View Article and Find Full Text PDFDiaper rash, mainly occurring as erythema and itching in the diaper area, causes considerable distress to infants and toddlers. Increasing evidence suggests that an unequal distribution of microorganisms on the skin contributes to the development of diaper dermatitis. Probiotic bacteria, like Staphylococcus epidermidis, are crucial for maintaining a healthy balance in the skin's microbiome, among others, through their fermentative metabolites, such as short-chain fatty acids.
View Article and Find Full Text PDFAerogels are unique solid materials that consist mainly of air and have an extremely low density, large open pores, and a large internal surface area [...
View Article and Find Full Text PDFInt J Biol Macromol
December 2023
The following article provides an insight into the production of chitosan aerogels as potential materials for tissue engineering. Chitosan aerogels were prepared following two different protocols: formation in ethanol and formation in sodium hydroxide in an ethanol solution. The main objective was to apply a new route to obtain chitosan aerogels with no external cross-linkers and compare the mentioned preparation approaches.
View Article and Find Full Text PDFThe kidneys are the body's main excretion organ with several additional functions, and the nephron represents their central structural unit. It is comprised of endothelial, mesangial, glomerular, and tubular epithelial cells, as well as podocytes. Treatment of acute kidney injury or chronic kidney disease (CKD) is complex due to broad etiopathogenic mechanisms and limited regeneration potential as kidney cells finish their differentiation after 34 weeks of gestation.
View Article and Find Full Text PDFThe isolation of keratin from poultry feathers using subcritical water was studied in a batch reactor at temperatures (120-250 °C) and reaction times (5-75 min). The hydrolyzed product was characterized by FTIR and elemental analysis, while the molecular weight of the isolated product was determined by SDS-PAGE electrophoresis. To determine whether disulfide bond cleavage was followed by depolymerization of protein molecules to amino acids, the concentration of 27 amino acids in the hydrolysate was analyzed by GC/MS.
View Article and Find Full Text PDFThe field of ophthalmology is expanding exponentially, both in terms of diagnostic and therapeutic capabilities, as well as the worldwide increasing incidence of eye-related diseases. Due to an ageing population and climate change, the number of ophthalmic patients will continue to increase, overwhelming healthcare systems and likely leading to under-treatment of chronic eye diseases. Since drops are the mainstay of therapy, clinicians have long emphasised the unmet need for ocular drug delivery.
View Article and Find Full Text PDFProbiotics are known for their positive effects on the gut microbiota. There is growing evidence that the infant gut and skin colonization have a role in the development of the immune system, which may be helpful in the prevention and treatment of atopic dermatitis. This systematic review focused on evaluating the effect of single-strain probiotic lactobacilli consumption on treating children's atopic dermatitis.
View Article and Find Full Text PDFThis study presents an innovative wound dressing system that offers a highly effective therapeutic solution for treating painful wounds. By incorporating the widely used non-steroidal anti-inflammatory drug diclofenac, we have created an active wound dressing that can provide targeted pain relief with ease. The drug was embedded within a biocompatible matrix composed of polyhydroxyethyl methacrylate and polyhydroxypropyl methacrylate.
View Article and Find Full Text PDFFunctional tissue engineering is a widely studied area of research with increasing importance in regenerative medicine, as well as in the development of in vitro models used for drug discovery and mimicking diseased tissues, among other applications. Electrospinning (ES) is one of the most widely used methods in these fields. It has attracted considerable interest because it can produce materials resembling the extracellular matrix of native tissues.
View Article and Find Full Text PDFMasks proved to be necessary protective measure during the COVID-19 pandemic, but they provided a physical barrier rather than inactivating viruses, increasing the risk of cross-infection. In this study, high-molecular weight chitosan and cationised cellulose nanofibrils were screen-printed individually or as a mixture onto the inner surface of the first polypropylene (PP) layer. First, biopolymers were evaluated by various physicochemical methods for their suitability for screen-printing and antiviral activity.
View Article and Find Full Text PDFAn electrochemical sensor for the detection of insulin in a single drop (50 μL) was developed based on the concept of molecularly imprinted polymers (MIP). The synthetic MIP receptors were assembled on a screen-printed carbon electrode (SPCE) by the electropolymerization of pyrrole (Py) in the presence of insulin (the protein template) using cyclic voltammetry. After electropolymerization, insulin was removed from the formed polypyrrole (Ppy) matrix to create imprinting cavities for the subsequent analysis of the insulin analyte in test samples.
View Article and Find Full Text PDFQuartz crystal microbalance (QCM) is a real-time, nanogram-accurate technique for analyzing various processes on biomaterial surfaces. QCM has proven to be an excellent tool in tissue engineering as it can monitor key parameters in developing cellular scaffolds. This review focuses on the use of QCM in the tissue engineering of cartilage.
View Article and Find Full Text PDFDetermining the viability of cells is fraught with many uncertainties. It is often difficult to determine whether a cell is still alive, approaching the point of no return, or dead. Today, there are many methods for determining cell viability.
View Article and Find Full Text PDFHerein, we fabricated chemically cross-linked polysaccharide-based three-dimensional (3D) porous scaffolds using an ink composed of nanofibrillated cellulose, carboxymethyl cellulose, and citric acid (CA), featuring strong shear thinning behavior and adequate printability. Scaffolds were produced by combining direct-ink-writing 3D printing, freeze-drying, and dehydrothermal heat-assisted cross-linking techniques. The last step induces a reaction of CA.
View Article and Find Full Text PDFDespite medical advances, skin-associated disorders continue to pose a unique challenge to physicians worldwide. Skin cancer is one of the most common forms of cancer, with more than one million new cases reported each year. Currently, surgical excision is its primary treatment; however, this can be impractical or even contradictory in certain situations.
View Article and Find Full Text PDFBackground: Degenerative disc disease is a progressive and chronic disorder with many open questions regarding its pathomorphological mechanisms. In related studies, in vitro organ culture systems are becoming increasingly essential as a replacement option for laboratory animals. Live disc cells are highly appealing to study the possible mechanisms of intervertebral disc (IVD) degeneration.
View Article and Find Full Text PDFThe unprecedented aging of the world's population will boost the need for orthopedic implants and expose their current limitations to a greater extent due to the medical complexity of elderly patients and longer indwelling times of the implanted materials. Biocompatible metals with multifunctional bioactive coatings promise to provide the means for the controlled and tailorable release of different medications for patient-specific treatment while prolonging the material's lifespan and thus improving the surgical outcome. The objective of this work is to provide a review of several groups of biocompatible materials that might be utilized as constituents for the development of multifunctional bioactive coatings on metal materials with a focus on antimicrobial, pain-relieving, and anticoagulant properties.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) represent the basis of novel clinical concepts in cellular therapy and tissue regeneration. Therefore, the isolation of MSCs from various tissues has become an important endeavour for stem cell biobanking and the development of regenerative therapies. Paravertebral adipose tissue is readily exposed during spinal procedures in children and could be a viable source of stem cells for therapeutic applications.
View Article and Find Full Text PDFRapid, selective, and cost-effective detection and determination of clinically relevant biomolecule analytes for a better understanding of biological and physiological functions are becoming increasingly prominent. In this regard, biosensors represent a powerful tool to meet these requirements. Recent decades have seen biosensors gaining popularity due to their ability to design sensor platforms that are selective to determine target analytes.
View Article and Find Full Text PDF