Publications by authors named "Uros Cerkvenik"

The urothelium is a vital permeability barrier that prevents the uncontrolled flow of urinary components into and out of the bladder interstitium. Our study addressed the question of possible sex-specific variations in the urothelium of healthy mice and their impact on chronic bladder inflammation. We found that healthy female bladders have a less robust barrier function than male bladders, as indicated by significant differences in transepithelial electrical resistance (TEER) values.

View Article and Find Full Text PDF
Drinking on the wing: water collection in polarotactic horseflies.

J Comp Physiol A Neuroethol Sens Neural Behav Physiol

November 2023

Many insects detect water bodies by observing the linearly polarised light which is reflected from the water surface. Polarotactic horseflies exhibit acrobatic manoeuvres above the water and are able to plunge on its surface, collect a droplet and fly away. This behaviour is extremely fast and has not yet been analysed.

View Article and Find Full Text PDF

Polarisation vision is commonplace among invertebrates; however, most experiments focus on determining behavioural and/or neurophysiological responses to static polarised light sources rather than moving patterns of polarised light. To address the latter, we designed a polarisation stimulation device based on superimposing polarised and non-polarised images from two projectors, which can display moving patterns at frame rates exceeding invertebrate flicker fusion frequencies. A linear polariser fitted to one projector enables moving patterns of polarised light to be displayed, whilst the other projector contributes arbitrary intensities of non-polarised light to yield moving patterns with a defined polarisation and intensity contrast.

View Article and Find Full Text PDF

Parasitic wasps use specialized needle-like structures, ovipositors, to drill into substrates to reach hidden hosts. The external ovipositor (terebra) consists of three interconnected, sliding elements (valvulae), which are moved reciprocally during insertion. This presumably reduces the required pushing force on the terebra and limits the risk of damage whilst probing.

View Article and Find Full Text PDF

Many insects can climb on smooth inverted substrates using adhesive hairy pads on their legs. The hair-surface contact is often mediated by minute volumes of liquid, which form capillary bridges in the contact zones and aid in adhesion. The liquid transport to the contact zones is poorly understood.

View Article and Find Full Text PDF

Many parasitic wasps use slender and steerable ovipositors to lay eggs in hosts hidden in substrates, but it is currently unknown how steering is achieved. The ovipositors generally consist of three longitudinally connected elements, one dorsal and two ventral valves that can slide along each other. For the parasitic wasp , it has been shown that protraction of the ventral valves causes incurving of the ventral valves towards the dorsal one, which results in a change in probing direction.

View Article and Find Full Text PDF

Hemipterans, mosquitoes, and parasitic wasps probe in a variety of substrates to find hosts for their larvae or food sources. Probes capable of sensing and precise steering enable insects to navigate through solid substrates without visual information and to reach targets that are hidden deep inside the substrate. The probes belong to non-related taxa and originate from abdominal structures (wasps) or mouthparts (hemipterans and mosquitoes), but nevertheless share several morphological characteristics.

View Article and Find Full Text PDF

Drilling into solid substrates with slender beam-like structures is a mechanical challenge, but is regularly done by female parasitic wasps. The wasp inserts her ovipositor into solid substrates to deposit eggs in hosts, and even seems capable of steering the ovipositor while drilling. The ovipositor generally consists of three longitudinally connected valves that can slide along each other.

View Article and Find Full Text PDF

Female field crickets use phonotaxis to locate males by their calling song. Male song production and female behavioural sensitivity form a pair of matched frequency filters, which in are tuned to a frequency of about 4.7 kHz.

View Article and Find Full Text PDF