Understanding new therapeutic paradigms for both castrate-sensitive and more aggressive castrate-resistant prostate cancer is essential to improve clinical outcomes. As a critically important cellular process, autophagy promotes stress tolerance by recycling intracellular components to sustain metabolism important for tumor survival. To assess the importance of autophagy in prostate cancer, we generated a new autochthonous genetically engineered mouse model (GEMM) with inducible prostate-specific deficiency in the Pten tumor suppressor and autophagy-related-7 (Atg7) genes.
View Article and Find Full Text PDFBackground: Biomarkers predicting tumor response are important to emerging targeted therapeutics. Complimentary methods to assess and understand genetic changes and heterogeneity within only few cancer cells in tissue will be a valuable addition for assessment of tumors such as prostate cancer that often have insufficient tumor for next generation sequencing in a single biopsy core.
Methods: Using confocal microscopy to identify cell-to-cell relationships in situ, we studied the most common gene rearrangement in prostate cancer (TMPRSS2 and ERG) and the tumor suppressor CHD1 in 56 patients who underwent radical prostatectomy.
Macroautophagy (autophagy hereafter) degrades and recycles proteins and organelles to support metabolism and survival in starvation. Oncogenic Ras up-regulates autophagy, and Ras-transformed cell lines require autophagy for mitochondrial function, stress survival, and engrafted tumor growth. Here, the essential autophagy gene autophagy-related-7 (atg7) was deleted concurrently with K-ras(G12D) activation in mouse models for non-small-cell lung cancer (NSCLC).
View Article and Find Full Text PDFPurpose: Targeting multiple anti-apoptotic proteins is now possible with the small molecule BH3 domain mimetics such as ABT-737. Given recent studies demonstrating that autophagy is a resistance mechanism to multiple therapeutic agents in the setting of apoptotic inhibition, we hypothesized that hydroxychloroquine (HCQ), an anti-malarial drug that inhibits autophagy, will increase cytotoxicity of ABT-737.
Experimental Design: Cytotoxicity of ABT-737 and HCQ was assessed in vitro in PC-3 and LNCaP cells, and in vivo in a xenograft mouse model.
Proc Natl Acad Sci U S A
July 2010
B-cell chronic lymphocytic leukemia (B-CLL), the most common leukemia in the Western world, occurs in two forms, aggressive (showing for the most part high ZAP-70 expression and unmutated IgH V(H)) and indolent (showing low ZAP-70 expression and mutated IgH V(H)). We found that miR-29a is up-regulated in indolent human B-CLL as compared with aggressive B-CLL and normal CD19(+) B cells. To study the role of miR-29 in B-CLL, we generated Emu-miR-29 transgenic mice overexpressing miR-29 in mouse B cells.
View Article and Find Full Text PDFB-cell chronic lymphocytic leukemia (CLL) is the most common human leukemia. 13q14 deletions are most common chromosomal alterations in CLL. We previously reported that miR-15/16 is a target of 13q14 deletions and plays a tumor suppressor role by targeting BCL2.
View Article and Find Full Text PDFB cell chronic lymphocytic leukemia (B-CLL) is the most common human leukemia. Deregulation of the T cell leukemia/lymphoma 1 (TCL1) oncogene in mouse B cells causes a CD5-positive leukemia similar to aggressive human B-CLLs. To examine the mechanisms by which Tcl1 protein exerts oncogenic activity in B cells, we investigated the effect of Tcl1 expression on NF-kappaB and activator protein 1 (AP-1) activity.
View Article and Find Full Text PDFB-cell chronic lymphocytic leukemia (B-CLL) is the most common human leukemia in the world. Deregulation of the TCL1 oncogene is a causal event in the pathogenesis of the aggressive form of this disease as was verified by using animal models. To study the mechanism of Tcl1 regulation in CLL, we carried out microRNA expression profiling of three types of CLL: indolent CLL, aggressive CLL, and aggressive CLL showing 11q deletion.
View Article and Find Full Text PDFTAL1 oncogene encodes a helix-loop-helix transcription factor, Tal1, which is required for blood cell development, and its activation is a frequent event in T-cell acute lymphoblastic leukemia. Tal1 interacts and inhibits other helix-loop-helix factors such as E47 and HEB. To investigate the function of Tal1 in B cells, we generated Emu-TAL1 transgenic mouse line, expressing Tal1 in mouse B-cell lineage.
View Article and Find Full Text PDF