The use of Plant Protection Products (PPPs) is leading to high exposure scenarios with potential risk to soil organisms, including non-target species. Assessment of the effects of PPPs on non-target organisms is one of the most important components of environmental risk assessment (ERA) since they play crucial functions in ecosystems, being main driving forces in different soil processes. As part of the framework, EFSA is proposing the use of the ecosystem services approach for setting specific protection goals.
View Article and Find Full Text PDFPlant Protection Products (PPP) raise concerns as their application may cause effects on some soil organisms considered non-target species which could be highly sensitive to some pesticides. The European Food and Safety Authority (EFSA), in collaboration with the Joint Research Centre (JRC) of the European Commission, has developed guidance and a software tool, Persistence in Soil Analytical Model (PERSAM), for conducting soil exposure assessments. EFSA PPR Panel has published recommendations for the risk assessment of non-target soil organisms.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
May 2022
During years sewage sludges have been worldwide poured in agricultural soils to enhance vegetal production. The "Landfill 17" located in Gernika-Lumo town (43°19'28.9"N 2°40'30.
View Article and Find Full Text PDFIncreasing soil loss and the scarcity of useful land requires new reusing strategies. Thus, recovery of polluted soils recovery offers a chance for economic and social regeneration. With this objective, different soil cleaning technologies have been developed during the last few decades.
View Article and Find Full Text PDFSoils contaminated by organic and inorganic pollutants like Cr(VI) and lindane, is currently a main environmental challenge. Biological strategies, such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, and nanoremediation with nanoscale zero-valent iron (nZVI) are promising approaches for polluted soil health recovery. The combination of different remediation strategies might be key to address this problem.
View Article and Find Full Text PDFGentle Remediation Options (GROs), such as biostimulation, bioaugmentation, phytoremediation and vermiremediation, are cost-effective and environmentally-friendly solutions for soils simultaneously polluted with organic and inorganic compounds. This study assessed the individual and combined effectiveness of GROs in recovering the health of a soil artificially polluted with hexavalent chromium [Cr(VI)] and lindane. A greenhouse experiment was performed using organically-amended non-amended mixed polluted soils.
View Article and Find Full Text PDFComp Biochem Physiol C Toxicol Pharmacol
May 2020
Several ecotoxicological studies assessed metal toxicity upon soil biota and other communities but were mainly focused on the study of a single chemical and usually under optimal conditions of temperature. Meanwhile an increasing global warming is leading to new scenarios by combining different stress factors; chemical stress and thermal stress. Presently, this study aims to assess the joint effects produced by cadmium and elevated temperature on earthworms different levels of biological complexity.
View Article and Find Full Text PDFBioremediation using actinobacterium consortia proved to be a promising alternative for the purification of co-contaminated environments. In this sense, the quadruple consortium composed of Streptomyces sp. M7, MC1, A5, and Amycolatopsis tucumanensis AB0 has been able to remove significant levels of Cr(VI) and lindane from anthropogenically contaminated soils.
View Article and Find Full Text PDFThe current use and development of applications with silver nanoparticles (Ag NPs) could lead to potential inputs of these NPs to soils. Consequently, it is crucial to understand the ecotoxicological risks posed by Ag NPs in the terrestrial compartment. In the present investigation, the effects produced by PVP-PEI coated Ag NPs were assessed in Eisenia fetida earthworms in comparison with the soluble form (AgNO).
View Article and Find Full Text PDF