Publications by authors named "Uriel Barkai"

Transplantation of encapsulated islets can cure diabetes without immunosuppression, but oxygen supply limitations can cause failure. We investigated a retrievable macroencapsulation device wherein islets are encapsulated in a planar alginate slab and supplied with exogenous oxygen from a replenishable gas chamber. Translation to clinically-useful devices entails reduction of device size by increasing islet surface density, which requires increased gas chamber pO Here we show that islet surface density can be substantially increased safely by increasing gas chamber pO to a supraphysiological level that maintains all islets viable and functional.

View Article and Find Full Text PDF

Macroencapsulation devices provide the dual possibility of immunoprotecting transplanted cells while also being retrievable, the latter bearing importance for safety in future trials with stem cell-derived cells. However, macroencapsulation entails a problem with oxygen supply to the encapsulated cells. The βAir device solves this with an incorporated refillable oxygen tank.

View Article and Find Full Text PDF

Transplantation of pancreatic islets for treating type 1 diabetes is restricted to patients with critical metabolic lability resulting from the need for immunosuppression and the shortage of donor organs. To overcome these barriers, we developed a strategy to macroencapsulate islets from different sources that allow their survival and function without immunosuppression. Here we report successful and safe transplantation of porcine islets with a bioartificial pancreas device in diabetic primates without any immune suppression.

View Article and Find Full Text PDF

Diabetes is a chronic disease characterized by high levels of blood glucose. Diabetic patients should normalize these levels in order to avoid short and long term clinical complications. Presently, blood glucose monitoring is dependent on frequent finger pricking and enzyme based systems that analyze the drawn blood.

View Article and Find Full Text PDF

Islet transplantation effectively treats diabetes but relies on immune suppression and is practically limited by the number of cadaveric islets available. An alternative cellular source is insulin-producing cells derived from pluripotent cell sources. Three animal cohorts were used in the current study to evaluate whether an oxygen-providing macro-encapsulation device, 'βAIR', could function in conjunction with human embryonic stem cells (hESCs) and their derivatives.

View Article and Find Full Text PDF

Background: To prevent transmission of zoonotic microorganisms from pig transplants to human recipients when performing xenotransplantation using pig cells, tissues, or organs, donor pigs have to be carefully characterized. Göttingen minipigs (GöMP) are often used for various biomedical investigations and are well characterized concerning the presence of numerous bacteria, fungi, viruses, and parasites. Recently, we studied the prevalence and expression of porcine endogenous retroviruses and the prevalence of hepatitis E virus (HEV) in GöMP.

View Article and Find Full Text PDF

Background: Xenotransplantation using pig cells, tissues or organs may be associated with the transmission of porcine zoonotic micro-organisms. Hepatitis E virus (HEV), porcine cytomegalovirus (PCMV) and porcine endogenous retroviruses (PERVs) are potentially zoonotic micro-organisms which do not show clinical symptoms in pigs and which are due to the low expression level difficult to detect. Göttingen Minipigs (GöMP) are often used for biomedical investigations and they are well characterized concerning the presence of numerous bacteria, fungi, viruses and parasites and therefore may be used for islet cell transplantation.

View Article and Find Full Text PDF

At present, proven clinical treatments but no cures are available for diabetes, a global epidemic with a huge economic burden. Transplantation of islets of Langerhans by their infusion into vascularized organs is an experimental clinical protocol, the first approach to attain cure. However, it is associated with lifelong use of immunosuppressants.

View Article and Find Full Text PDF

Xenotransplantation has been proposed as a solution to the shortage of suitable human donors. Pigs are currently favoured as donor animals for xenotransplantation of cells, including islet cells, or organs. To reduce the xenotransplantation-associated risk of infection of the recipient the pig donor should be carefully characterised.

View Article and Find Full Text PDF

Current treatment options for adrenal insufficiency are limited to corticosteroid replacement therapies. However, hormone therapy does not replicate circadian rhythms and has unpleasant side effects especially due to the failure to restore normal function of the hypothalamic-pituitary-adrenal (HPA) axis. Adrenal cell transplantation and the restoration of HPA axis function would be a feasible and useful therapeutic strategy for patients with adrenal insufficiency.

View Article and Find Full Text PDF

Transplantation of pancreatic islets is emerging as a successful treatment for type-1 diabetes. Its current stringent restriction to patients with critical metabolic lability is justified by the long-term need for immunosuppression and a persistent shortage of donor organs. We developed an oxygenated chamber system composed of immune-isolating alginate and polymembrane covers that allows for survival and function of islets without immunosuppression.

View Article and Find Full Text PDF

Developing a device that protects xenogeneic islets to allow treatment and potentially cure of diabetes in large mammals has been a major challenge in the past decade. Using xenogeneic islets for transplantation is required in light of donor shortage and the large number of diabetic patients that qualify for islet transplantation. Until now, however, host immunoreactivity against the xenogeneic graft has been a major drawback for the use of porcine islets.

View Article and Find Full Text PDF

Background: To establish the safety of xenotransplantation when cells, tissues, or organs of pigs are used, an effective screening for potential zoonotic microorganisms has to be performed. In doing so, special attendance has to be paid to porcine endogenous retroviruses (PERVs) that are widely distributed as proviruses in the genome of pigs. PERV-A and PERV-B are present in all pigs, they infect human cells in vitro and therefore represent a direct risk.

View Article and Find Full Text PDF

The current epidemic of diabetes with its overwhelming burden on our healthcare system requires better therapeutic strategies. Here we present a promising novel approach for a curative strategy that may be accessible for all insulin-dependent diabetes patients. We designed a subcutaneous implantable bioartificial pancreas (BAP)-the "β-Air"-that is able to overcome critical challenges in current clinical islet transplantation protocols: adequate oxygen supply to the graft and protection of donor islets against the host immune system.

View Article and Find Full Text PDF

Islet transplantation is a feasible therapeutic alternative for metabolically labile patients with type 1 diabetes. The primary therapeutic target is stable glycemic control and prevention of complications associated with diabetes by reconstitution of endogenous insulin secretion. However, critical shortage of donor organs, gradual loss in graft function over time, and chronic need for immunosuppression limit the indication for islet transplantation to a small group of patients.

View Article and Find Full Text PDF