Phys Rev Lett
March 2024
The stability of molecular junctions under transport is of the utmost importance for the field of molecular electronics. This question is often addressed within the paradigm of current-induced heating of nuclear degrees of freedom or current-induced forces acting upon the nuclei. At the same time, an essential characteristic of the failure of a molecular electronic device is its changing conductance - typically from a finite value for the intact device to zero for a device that lost its functionality.
View Article and Find Full Text PDFThe study of chemical reactions in environments under nonequilibrium conditions has been of interest recently in a variety of contexts, including current-induced reactions in molecular junctions and scanning tunneling microscopy experiments. In this work, we outline a fully quantum mechanical, numerically exact approach to describe chemical reaction rates in such nonequilibrium situations. The approach is based on an extension of the flux correlation function formalism to nonequilibrium conditions and uses a mixed real and imaginary time hierarchical equations of motion approach for the calculation of rate constants.
View Article and Find Full Text PDFUnderstanding current-induced bond rupture in single-molecule junctions is both of fundamental interest and a prerequisite for the design of molecular junctions, which are stable at higher-bias voltages. In this work, we use a fully quantum mechanical method based on the hierarchical quantum master equation approach to analyze the dissociation mechanisms in molecular junctions. Considering a wide range of transport regimes, from off-resonant to resonant, non-adiabatic to adiabatic transport, and weak to strong vibronic coupling, our systematic study identifies three dissociation mechanisms.
View Article and Find Full Text PDFThe fundamental biological process of electron transfer (ET) takes place across proteins with common ET pathways of several nanometers. Recent discoveries push this limit and show long-range extracellular ET over several micrometers. Here, we aim in deciphering how protein-bound intramolecular cofactors can facilitate such long-range ET.
View Article and Find Full Text PDFExternal driving of the Fermion reservoirs interacting with a nanoscale charge-conductor is shown to enhance its mechanical stability during resonant tunneling. This counterintuitive cooling effect is predicted despite the net energy flow into the device. Field-induced plasmon oscillations stir the energy distribution of charge carriers near the reservoir's chemical potentials into a nonequilibrium state with favored transport of low-energy electrons.
View Article and Find Full Text PDFQuantum furling and unfurling are inelastic transitions between localized and delocalized electronic states. We predict scenarios where these processes govern charge transport through donor-bridge-acceptor molecular junctions. Like in the case of ballistic transport, the resulting currents are nearly independent of the molecular bridge length.
View Article and Find Full Text PDFBiological electron transfer (ET) is one of the most studied biochemical processes due to its immense importance in biology. For many years, biological ET was explained using the classical incoherent transport mechanism, i.e.
View Article and Find Full Text PDFWe explore the transport of fermions through a quantum conductor in the presence of contact vibrations. The latter are coupled to charge transfer between the fermion reservoirs and the conductor but remain inert to the charging state of the conductor itself. We derive explicit expressions for charge transfer rates into and out of the conductor which extend the scope of rate theories of inelastic transport to the presence of contact vibrations.
View Article and Find Full Text PDFThe promise of the field of single-molecule electronics is to reveal a new class of quantum devices that leverages the strong electronic interactions inherent to subnanometer scale systems. Here, we form Au-molecule-Au junctions using a custom scanning tunneling microscope and explore charge transport through current-voltage measurements. We focus on the resonant tunneling regime of two molecules, one that is primarily an electron conductor and one that conducts primarily holes.
View Article and Find Full Text PDFWeak fluctuations about the rigid equilibrium structure of ordered molecular bridges drive charge transfer in donor-bridge-acceptor systems via quantum unfurling, which differs from both hopping and ballistic transfer, yet static disorder (low frequency motions) in the bridge is shown to induce a change of mechanism from unfurling to hopping when local fluctuations along the molecular bridge are uncorrelated. Remarkably, these two different transport mechanisms manifest in similar charge-transfer rates, which are nearly independent of the molecular bridge length. We propose an experimental test for distinguishing unfurling from hopping in DNA models with different helix directionality.
View Article and Find Full Text PDFResonant tunneling is an efficient mechanism for charge transport through nanoscale conductance junctions due to the relatively high currents involved. However, continuous charging and discharging cycles of the nanoconductor during resonant tunneling often lead to mechanical instability. The realization of efficient nanoscale electronic components therefore depends to a large extent on the ability to mechanically stabilize them during resonant transport.
View Article and Find Full Text PDFThe semiconductor device industry is constantly challenged by the demands of miniaturization. Therefore, the use of nanomaterials, such as quantum dots (QDs), is expected. At these scales, quantum effects are anticipated under industrial working conditions.
View Article and Find Full Text PDFExperiments on hole transfer in DNA between donor and acceptor moieties revealed transfer rates which are independent of the molecular bridge length (within experimental error). However, the physical origin of this intriguing observation is still unclear. The hopping model implies that the hole propagates in multiple steps along the bridge from one localized state to another, and therefore the longer the bridge, the slower the transfer.
View Article and Find Full Text PDFColloidal quantum dots are free-standing nanostructures with chemically tunable electronic properties. In this work, we consider a new STM tip-double quantum dot (DQD)-surface setup with a unique connectivity, in which the tip is coupled to a single dot and the coupling to the surface is shared by both dots. Our theoretical analysis reveals a unique negative differential resistance (NDR) effect attributed to destructive interference during charge transfer from the DQD to the surface.
View Article and Find Full Text PDFThe slow response of electronic components in junctions limits the direct applicability of pump-probe type spectroscopy in assessing the intramolecular dynamics. Recently the possibility of getting information on a sub-picosecond time scale from dc current measurements was proposed. We revisit the idea of picosecond resolution by pump-probe spectroscopy from dc measurements and show that any intramolecular dynamics not directly related to charge transfer in the current direction is missed by current measurements.
View Article and Find Full Text PDFColloidal quantum dots (CQDs) are free-standing nanostructures with chemically tunable electronic properties. This combination of properties offers intriguing new possibilities for nanoelectromechanical devices that were not explored yet. In this work, we consider a new scanning tunneling microscopy setup for measuring ligand-mediated effective interdot forces and for inducing motion of individual CQDs within an array.
View Article and Find Full Text PDFPhys Chem Chem Phys
October 2012
The question whether dissipative bio-molecular systems can support efficient coherent (phase-conserving) charge transport is raised again following recent experiments on electron-energy transfer in bio-molecules. In this work we formulate conditions under which the current due to coherent ballistic resonant charge transport through DNA molecular junctions can be measured in spite of coupling to the dissipative environment.
View Article and Find Full Text PDFWithin a generic model, we discuss the possibility of coherent control of charge fluxes in unbiased molecular junctions. The control is induced by resonances between the Rabi frequency due to a pumping laser field and internal characteristic frequencies of pre-designed molecular donor-bridge-acceptor complexes. Two models are considered: a coherently controlled molecular charge pump and a molecular switch.
View Article and Find Full Text PDFWe show that individual vibrational modes in single-molecule junctions with asymmetric molecule-lead coupling can be selectively excited by applying an external bias voltage. Thereby, a non-statistical distribution of vibrational energy can be generated, that is, a mode with a higher frequency can be stronger excited than a mode with a lower frequency. This is of particular interest in the context of mode-selective chemistry, where one aims to break specific (not necessarily the weakest) chemical bond in a molecule.
View Article and Find Full Text PDFIn a nanoscale molecular junction at finite bias voltage, the intramolecular distribution of vibrational energy can strongly deviate from the thermal equilibrium distribution and specific vibrational modes can be selectively excited in a controllable way, regardless of the corresponding mode frequency. This is demonstrated for generic models of asymmetric molecular junctions with localized electronic states, employing a master equation as well as a nonequilibrium Green's function approach. It is shown that the applied bias voltage controls the excitation of specific vibrational modes by tuning the efficiency of vibrational cooling processes due to energy exchange with the leads.
View Article and Find Full Text PDFA quantum sampling algorithm for the interpolation of diabatic potential energy matrices by the Grow method is introduced. The new procedure benefits from penetration of the wave packet into classically forbidden regions, and the accurate quantum mechanical description of nonadiabatic transitions. The increased complexity associated with running quantum dynamics is reduced by using approximate low order expansions of the nuclear wave function within a Multi-configuration time-dependent Hartree scheme during the Grow process.
View Article and Find Full Text PDFDefining the conditions for coherent site-directed transport from an electron donor to a specific acceptor through tunneling barriers in a network of multiple donor/acceptors sites is an important step toward controlling electronic processes in molecular networks. The required analysis is most challenging since the entire network in essentially involved in coherent transport. In this work we introduce an efficient approach for formulating an effective donor/acceptor coupling in terms of the entire network parameters.
View Article and Find Full Text PDFPossible mechanisms for charge-transport-induced dissociation in donor-bridge-acceptor complexes are studied. Two mechanisms for dissociation at the molecular bridge are captured within a simple model of an anharmonic bridge vibration coupled nonlinearly to an electronic degree of freedom. A direct mechanism is associated with vibronic excitations to the nuclear continuum and an alternative dissociation mechanism involves intermediate quasibound vibrational states (Feshbach resonances).
View Article and Find Full Text PDFThe ability to control electronic tunneling in complex molecular networks of multiple donor/acceptor sites is studied theoretically. Our past analysis, demonstrating the phenomenon of site-directed transport, was limited to the coherent tunneling regime. In this work we consider electronic coupling to a dissipative molecular environment including the effect of decoherence.
View Article and Find Full Text PDF