Publications by authors named "Uri Nudel"

It is with great sadness that we have learned about the passing of Professor David Yaffe (1929-2020, Israel). Yehi Zichro Baruch - May his memory be a blessing. David was a man of family, science and nature.

View Article and Find Full Text PDF

Mental retardation is a feature of X-linked Duchenne muscular dystrophy (DMD) which likely results from the loss of the brain full-length (Dp427) and short C-terminal products of the dystrophin gene, such as Dp71. The loss of Dp427 or Dp71 is known to alter hippocampal glutamate-dependent synaptic transmission and plasticity in mice. Although dystrophins have a selective postsynaptic expression in brain, a putative role in retrograde regulation of transmitter release was suggested by studies in Drosophila.

View Article and Find Full Text PDF

Background: The question of whether intact somatic cells committed to a specific differentiation fate, can be reprogrammed in vivo by exposing them to a different host microenvironment is a matter of controversy. Many reports on transdifferentiation could be explained by fusion with host cells or reflect intrinsic heterogeneity of the donor cell population.

Methodology/principal Findings: We have tested the capacity of cloned populations of mouse and human muscle progenitor cells, committed to the myogenic pathway, to transdifferentiate to neurons, following their inoculation into the developing brain of newborn mice.

View Article and Find Full Text PDF

Background: Duchenne muscular dystrophy (DMD) is caused by deficient expression of the cytoskeletal protein, dystrophin. One third of DMD patients also have mental retardation (MR), likely due to mutations preventing expression of dystrophin and other brain products of the DMD gene expressed from distinct internal promoters. Loss of Dp71, the major DMD-gene product in brain, is thought to contribute to the severity of MR; however, the specific function of Dp71 is poorly understood.

View Article and Find Full Text PDF

In a recent study, we demonstrated that in the plasma membrane AQP4 is organized into several distinct large multisubunit complexes. In this study, we analysed whether these pools are similarly affected in dystrophin-deficient mice and immunolocalized the sites of dystrophin-dependent and -independent AQP4 pools. Western blot performed on two-dimensional Blue Native/SDS-PAGE membranes indicated that, among the AQP4 pools, it was mainly a large multisubunit complex that was specifically affected in dystrophin-deficient mice (DP71 and mdx3cv mice).

View Article and Find Full Text PDF

The dystrophin-associated proteins (DAPs) complex consisting of dystroglycan, syntrophin, dystrobrevin, and sarcoglycans in muscle cells is associated either with dystrophin or its homolog utrophin. In rat retina, a similar complex was found associated with dystrophin-Dp71 that serves as an anchor for the inwardly rectifying potassium channel Kir4.1 and the aqueous pore, aquaporin-4 (AQP4).

View Article and Find Full Text PDF

A number of studies have been conducted recently on the model organism Drosophila to determine the function of genes involved in human disease, including those implicated in neurological disorders, cancer and metabolic and cardiovascular diseases. The simple structure and physiology of the Drosophila heart tube together with the available genetics provide a suitable in vivo assay system for studying cardiac gene functions. In our study, we focus on analysis of the role of dystrophin (Dys) in heart physiology.

View Article and Find Full Text PDF

Perturbation in the Dystroglycan (Dg)-Dystrophin (Dys) complex results in muscular dystrophies and brain abnormalities in human. Here we report that Drosophila is an excellent genetically tractable model to study muscular dystrophies and neuronal abnormalities caused by defects in this complex. Using a fluorescence polarization assay, we show a high conservation in Dg-Dys interaction between human and Drosophila.

View Article and Find Full Text PDF

We have isolated from mouse skeletal muscle a subpopulation of slow adherent myogenic cells that can proliferate for at least several months as suspended clusters of cells (myospheres). In the appropriate conditions, the myospheres adhere to the plate, spread out, and form a monolayer of MyoD(+) cells. Unlike previously described myogenic cell lines, most of the myosphere cells differentiate, without cell fusion, into thin mononucleated contractile fibers, which express myogenin and skeletal muscle myosin heavy chain.

View Article and Find Full Text PDF

We show that the drosophila gene encoding the dystrophin-like protein (DLP) is as complex as the mammalian dystrophin gene. Three 5' promoters and three internal promoters regulate the expression of three full-length and three truncated products, respectively. The existence of this complex gene structure in such evolutionary remote organisms suggests that both types of products have diverse important functions.

View Article and Find Full Text PDF

Dp71 expression is present in myoblasts but declines during myogenesis to avoid interfering with the function of dystrophin, the predominant Duchenne muscular dystrophy gene product in differentiated muscle fibers. To elucidate the transcriptional regulatory mechanisms operating on the developmentally regulated expression of Dp71, we analyzed the Dp71 expression and promoter activity during myogenesis of the C2C12 cells. We demonstrated that the cellular content of Dp71 transcript and protein decrease in myotubes as a consequence of the negative regulation that the differentiation stimulus exerts on the Dp71 promoter.

View Article and Find Full Text PDF

products of the dystrophin gene range from the 427-kDa full-length dystrophin to the 70.8-kDa Dp71. Dp427 is expressed in skeletal muscle, where it links the actin cytoskeleton with the extracellular matrix via a complex of dystrophin-associated proteins (DAPs).

View Article and Find Full Text PDF

The abnormal retinal neurotransmission observed in Duchenne muscular dystrophy (DMD) patients and in some genotypes of mice lacking dystrophin has been attributed to altered expression of short products of the dystrophin gene. We have investigated the potential role of Dp71, the most abundant C-terminal dystrophin gene product, in retinal electrophysiology. Comparison of the scotopic electroretinograms (ERG) between Dp71-null mice and wild-type (wt) littermates revealed a normal ERG in Dp71-null mice with no significant changes of the b-wave amplitude and kinetics.

View Article and Find Full Text PDF

Dystrophin, the protein which is absent or non-functional in Duchenne muscular dystrophy, consists of four main domains: an N-terminal actin binding domain, a rod shaped domain of spectrin-like repeats, a cysteine-rich domain and a unique C-terminal domain. In muscle, dystrophin forms a linkage between the cytoskeletal actin and a group of membrane proteins (dystrophin associated proteins). The N-terminal domain binds to the cytoskeletal actin and the association with the dystrophin associated proteins is mediated mainly by the cysteine-rich and C-terminal domains of dystrophin.

View Article and Find Full Text PDF