Dynamics simulation with frictional contacts is important for a wide range of applications, from cloth simulation to object manipulation. Recent methods using smoothed lagged friction forces have enabled robust and differentiable simulation of elastodynamics with friction. However, the resulting frictional behavior can be inaccurate and may not converge to analytic solutions.
View Article and Find Full Text PDFIEEE Trans Vis Comput Graph
October 2018
High quality simulations of the dynamics of soft flexible objects can be rather costly, because the assembly of internal forces through an often nonlinear stiffness at each time step is expensive. Many standard implicit integrators introduce significant, time-step dependent artificial damping. Here we propose and demonstrate the effectiveness of an exponential Rosenbrock-Euler (ERE) method which avoids discretization-dependent artificial damping.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
May 2009
We describe a methodology to qualitatively and quantitatively determine the activation level of individual muscles by voltage measurements from an array of voltage sensors on the skin surface. A physical finite element model for electrostatics simulation is constructed from morphometric data and numerical inversion techniques are used to determine muscle activation patterns. Preliminary results from experiments with simulated and human data are presented for activation reconstructions of three muscles in the upper arm (biceps brachii, bracialis, and triceps).
View Article and Find Full Text PDF