Collagen triple helix repeat containing protein 1 (Cthrc1) is a secreted glycoprotein reported to regulate collagen deposition and to be linked to the Transforming growth factor β/Bone morphogenetic protein and the Wnt/planar cell polarity pathways. It was first identified as being induced upon injury to rat arteries and was found to be highly expressed in multiple human cancer types. Here, we explore the phylogenetic and evolutionary trends of this metazoan gene family, previously studied only in vertebrates.
View Article and Find Full Text PDFBackground: The ability of regeneration is essential for the homeostasis of all animals as it allows the repair and renewal of tissues and body parts upon normal turnover or injury. The extent of this ability varies greatly in different animals with the sea anemone Nematostella vectensis, a basal cnidarian model animal, displaying remarkable whole-body regeneration competence.
Results: In order to study this process in Nematostella we performed an RNA-Seq screen wherein we analyzed and compared the transcriptional response to bisection in the wound-proximal body parts undergoing oral (head) or aboral (tail) regeneration at several time points up to the initial restoration of the basic body shape.
Alopecia-neurological defects-endocrinopathy (ANE) syndrome is a rare inherited hair disorder, which was shown to result from decreased expression of the RNA-binding motif protein 28 (RBM28). In this study, we attempted to delineate the role of RBM28 in hair biology. First, we sought to obtain evidence for the direct involvement of RBM28 in hair growth.
View Article and Find Full Text PDFThe YAP1 gene encodes a potent new oncogene and stem cell factor. However, in some cancers, the YAP1 gene plays a role of tumor suppressor. At present, the gene and its products are intensely studied and its cDNAs are used as transgenes in cellular and animal models.
View Article and Find Full Text PDFThe Hippo/YAP pathway plays an important role in animal organ size control, which it exerts by regulating tissue proliferation and apoptosis rates as a response to developmental cues, cell contact, and density. With the ever increasing advance in genome sequencing and analysis tools, our understanding of the animal world and its evolution has greatly increased in the recent years. We used bioinformatic tools to study the evolution of the Hippo/YAP pathway focusing on the transcriptional coactivator YAP, which is a pivotal effector of the pathway.
View Article and Find Full Text PDFDragline spider silk has been intensively studied for its superior qualities as a biomaterial. In previous studies, we made use of the baculovirus mediated expression system for the production of a recombinant Araneus diadematus spider silk dragline ADF4 protein and its self-assembly into intricate fibers in host insect cells. In this study, our aim was to explore the function of the major repetitive domain of the dragline spider silk.
View Article and Find Full Text PDFBackground: Members of the Runx family of transcriptional regulators, which bind DNA as heterodimers with CBFbeta, are known to play critical roles in embryonic development in many triploblastic animals such as mammals and insects. They are known to regulate basic developmental processes such as cell fate determination and cellular potency in multiple stem-cell types, including the sensory nerve cell progenitors of ganglia in mammals.
Results: In this study, we detect and characterize the hitherto unexplored Runx/CBFbeta genes of cnidarians and sponges, two basal animal lineages that are well known for their extensive regenerative capacity.
Development of the skin epidermis and appendages such as hair follicles involves coordinated processes of keratinocyte proliferation and differentiation. The transcription factor p63 plays a critical role in these steps as evident by a complete lack of these structures in p63 null mice. The p63 gene encodes for two proteins TAp63 and DeltaNp63, the latter being the more prevalent and dominant isoform expressed in keratinocytes.
View Article and Find Full Text PDFThe hair follicle is an intricate miniature organ dedicated to the production of the structural hair fiber, which is largely composed of hair keratin (HK) proteins. Many developmental pathways contribute to hair follicle development; however, the molecular control of HK genes is still far from being resolved. Because the nuclear factor (NF)-kappaB pathway is known to be involved in the morphogenesis of the hair follicle, we explored the possibility that it may also regulate HK expression.
View Article and Find Full Text PDFThe three mammalian Runx transcription factors, some of which are known to be involved in human genetic diseases and cancer, are pivotal players in embryo development and function as key regulators of cell fate determination and organogenesis. Here, we report the expression of Runx1 during the development of hair and other skin appendages in the mouse and describe the effect of Runx1 on the structural hair output. In hair follicles, where the three Runx proteins are expressed, Runx1 expression is most prominent in both mesenchymal and epithelial compartments.
View Article and Find Full Text PDFWe have employed baculovirus-mediated expression of the recombinant A. diadematus spider dragline silk fibroin rADF-4 to explore the role of the evolutionary conserved C-terminal domain in self-assembly of the protein into fiber. In this unique system, polymerization of monomers occurs in the cytoplasm of living cells, giving rise to superfibers, which resemble some properties of the native dragline fibers that are synthesized by the spider using mechanical spinning.
View Article and Find Full Text PDFTranscriptional regulators of the Runx family play critical roles in normal organ development and, when mutated, lead to genetic diseases and cancer. Runx3 functions during cell lineage decisions in thymopoiesis and neurogenesis and mediates transforming growth factor-beta signaling in dendritic cells. Here, we study the function of Runx3 in the skin and its appendages, primarily the hair follicle, during mouse development.
View Article and Find Full Text PDFSpider dragline silk, which exhibits extraordinary strength and toughness, is primarily composed of two related proteins that largely consist of repetitive sequences. In most spiders, the repetitive region of one of these proteins is rich in prolines, which are not present in the repetitive region of the other. The absence of prolines in one component was previously speculated to be essential for the thread structure.
View Article and Find Full Text PDF