Phosphate-based glasses (PBGs) are bioactive and fully degradable materials with tailorable degradation rates. PBGs can be produced as porous microspheres through a single-step process, using changes in their formulation and geometry to produce varying pore sizes and interconnectivity for use in a range of applications, including biomedical use. Calcium phosphate PBGs have recently been proposed as orthobiologics, based on their in vitro cytocompatibility and ion release profile.
View Article and Find Full Text PDFPhosphate-based glasses (PBGs) are ideal materials for regenerative medicine strategies because their composition, degradation rates, and ion release profiles can easily be controlled. Strontium has previously been found to simultaneously affect bone resorption and deposition. Therefore, by combining the inherent properties of resorbable PBG and therapeutic activity of strontium, these glasses could be used as a delivery device of therapeutic factors for the treatment of orthopaedic diseases such as osteoporosis.
View Article and Find Full Text PDFUnlabelled: Orthobiologics is a rapidly advancing field utilising cell-based therapies and biomaterials to enable the body to repair and regenerate musculoskeletal tissues. This paper reports on a cost-effective flame spheroidisation process for production of novel porous glass microspheres from calcium phosphate-based glasses to encapsulate and deliver stem cells. Careful selection of the glass and pore-forming agent, along with a manufacturing method with the required processing window enabled the production of porous glass microspheres via a single-stage manufacturing process.
View Article and Find Full Text PDFAn overview of microspheres manufactured for use in biomedical applications based on recent literature is presented in this review. Different types of glasses (i.e.
View Article and Find Full Text PDF