Peptides have attracted great interest as platforms for the design of nanocomposite hydrogels due to their distinct bioactivity, biofunctionality and biocompatibility. Previously, we have reported on a family of peptides that self-assembled to form stabilised three-dimensional hydrogel networks, displaying potent antimicrobial activity. In this paper, we report on the use of these hydrogelator sequences and their analogues as stabilisers and growth controllers to synthesise anisotropic gold nanoparticles (AuNPs) of different sizes and shapes.
View Article and Find Full Text PDFSurface functionalisation of natural materials to develop sustainable and environmentally friendly antimicrobial fibres has received great research interest in recent years. Herein, chitosan covalent conjugation via aryl-diazonium based chemistry onto Phormium tenax fibres (PTF) and hemp hurds (HH) was investigated. PTF are fibres derived from Harakeke/New Zealand flax, an indigenous and abundant plant source of leaf fibres, which served as an important 19th century export commodity of New Zealand.
View Article and Find Full Text PDFNew antimicrobials are urgently needed to combat the rising global health concern of antibiotic resistance. Antimicrobial peptides (AMPs) are one of the leading candidates as new antimicrobials since they target bacterial membranes and are therefore less prone to bacterial resistance. However, poor enzymatic stability, high production costs, and toxicity are drawbacks that limit their clinical use.
View Article and Find Full Text PDFSynthesis of 6-O-(3-alkylamino-2-hydroxypropyl) derivatives of chitosan was achieved using a four-step strategy of N-protection, O-epoxide addition, epoxide ring opening using an amine and N-deprotection. Benzaldehyde and phthalic anhydride were used for the N-protection step, producing N-benzylidene and N-phthaloyl protected derivatives, respectively, resulting in two corresponding final 6-O-(3-alkylamino-2-hydroxypropyl) derivative series, BD1-BD6 and PD1-PD14. All the compounds were characterized using FTIR, XPS and PXRD studies and tested for antibacterial efficacy.
View Article and Find Full Text PDFBioconjug Chem
November 2017
The escalation of multidrug-resistant pathogens has created a dire need to develop novel ways of addressing this global therapeutic challenge. Because of their antimicrobial activities, the combination of antimicrobial peptides (AMPs) and nanoparticles is a promising tool with which to kill drug-resistant pathogens. In recent years, several studies using AMP-nanoparticle conjugates, especially metallic nanoparticles, as potential antimicrobial agents against drug-resistant pathogens have been published.
View Article and Find Full Text PDF