Selective cleavage of amide bonds holds prominent significance by facilitating precise manipulation of biomolecules, with implications spanning from basic research to therapeutic interventions. However, achieving selective cleavage of amide bonds via mild synthetic chemistry routes poses a critical challenge. Here, we report a novel amide bond-cleavage reaction triggered by Na[AuCl] in mild aqueous conditions, where a crucial cyclization step leads to the formation of a 5-membered ring intermediate that rapidly hydrolyses to release the free amine in high yields.
View Article and Find Full Text PDFThe chemical toolbox for the selective modification of proteins has witnessed immense interest in the past few years. The rapid growth of biologics and the need for precision therapeutics have fuelled this growth further. However, the broad spectrum of selectivity parameters creates a roadblock to the field's growth.
View Article and Find Full Text PDFAnalytically pure proteins are indispensable for diverse applications, including therapeutics. Here, we report a methodology where a single amino acid, glycine, enables metal-free protein purification. This robust platform is enabled by a Gly-tag resin for site-specific capture, enrichment, and release through chemically triggered C-C bond dissociation by resonance-assisted electron density polarization.
View Article and Find Full Text PDFThe ability to create ways to control drug activation at specific tissues while sparing healthy tissues remains a major challenge. The administration of exogenous target-specific triggers offers the potential for traceless release of active drugs on tumor sites from antibody-drug conjugates (ADCs) and caged prodrugs. We have developed a metal-mediated bond-cleavage reaction that uses platinum complexes [KPtCl or Cisplatin (CisPt)] for drug activation.
View Article and Find Full Text PDFLabeling of native proteins invites interest from diverse segments of science. However, there remains the significant unmet challenge in precise labeling at a single site of a protein. Here, we report the site-specific labeling of natural or easy-to-engineer N-terminus Gly in proteins with remarkable efficiency and selectivity.
View Article and Find Full Text PDF© LitMetric 2025. All rights reserved.