In the present work, the effect of non-resonant intense laser field on the nonlinear optical rectification and second and third harmonic generation of -type double -doped GaAs quantum well is studied in detail. The energy eigenvalues and eigenfunctions of this structure are calculated within the framework of effective mass and envelope function approximations. Analytic formulas for the coefficients of nonlinear optical rectification and second and third harmonic generation are obtained using the compact-density matrix approach (CDMA) and iterative method.
View Article and Find Full Text PDFWithin the envelope function approach and the effective-mass approximation, we have investigated theoretically the effect of an intense, high-frequency laser field on the bound states in a GaxIn1 - xNyAs1 - y/GaAs double quantum well for different nitrogen and indium mole concentrations. The laser-dressed potential, bound states, and squared wave functions related to these bound states in Ga1 - xInxNyAs1 - y/GaAs double quantum well are investigated as a function of the position and laser-dressing parameter. Our numerical results show that both intense laser field and nitrogen (indium) incorporation into the GaInNAs have strong influences on carrier localization.
View Article and Find Full Text PDFUsing a variational approach, we have investigated the effects of the magnetic field, the impurity position, and the nitrogen and indium concentrations on impurity binding energy in a Ga1-xInxNyAs1-y/GaAs quantum well. Our calculations have revealed the dependence of impurity binding on the applied magnetic field, the impurity position, and the nitrogen and indium concentrations.
View Article and Find Full Text PDF