Publications by authors named "Unak P"

This study was performed to synthesize multimodal radiopharmaceutical designed for the diagnosis and treatment of prostate cancer. To achieve this goal, superparamagnetic iron oxide (SPIO) nanoparticles were used as a platform for targeting molecule (PSMA-617) and for complexation of two scandium radionuclides, Sc for PET imaging and Sc for radionuclide therapy. TEM and XPS images showed that the FeO NPs have a uniform cubic shape and a size from 38 to 50 nm.

View Article and Find Full Text PDF

The purpose of this study was to develop a multifunctional theranostic probe for imaging (magnetic resonance imaging [MRI] and single-photon emission computed tomography [SPECT]) and therapy (photodynamic therapy). For this purpose, Tc-99m-labeled lupulone-conjugated FeO@TiO nanocomposites (Tc-DTPA-FeO@TiO-HLP and Tc-DTPA-FeO@TiO-ALP nanocomposites) were synthesized. The average diameter of the nanocomposites was 171 ± 20 nm as seen on transmission electron microscopy images.

View Article and Find Full Text PDF

Iron nanoparticles (MNPs) are known to induce membrane damage and apoptosis of cancer cells. In our study we determined whether FDG coupled with iron oxide magnetic nanoparticles can exert the same destructive effect on cancer cells. This research study presents data involving NIC-H727 human lung, bronchus epithelial cells exposed to conjugated fluorodeoxyglucose conjugated with iron-oxide magnetic nanoparticles and indocyanine green (ICG) dye (FDG-MNP-ICG), with and without the application of a magnetic field.

View Article and Find Full Text PDF

Prostate cancer is the most common malignancy and leading cause of cancer deaths in men. Thus, the development of novel strategies for performing combined prostate cancer imaging and therapy methods is crucial and could have a significant impact on patient care. This current study aimed to design a multimodality nanoconjugate to be used for both PET and optical imaging and as a therapeutic radio/photo sensitizer and anti-angiogenesis agent.

View Article and Find Full Text PDF

We present a report regarding the cytotoxic effects of iron-based magnetic nanoparticles conjugated with fluorodeoxyglucose (FDG-mNPs) on the viability of NCI-H727 and SH-SY5Y cancer cells. MTT assays were performed to determine cell viability in treated cancer cells grown under standard 2D culture conditions. FDG-mNP concentrations of 0.

View Article and Find Full Text PDF

In this study, FeO@TiO nanoparticles were synthesized as a new Positron Emission Tomography/Magnetic Resonance Imaging (PET/MRI) hybrid imaging agent and radiolabeled with Zr. In addition, FeO nanoparticles were synthesized and radiolabeled with Zr. Df-Bz-NCS was used as bifunctional ligand.

View Article and Find Full Text PDF

Background: Theranostic oncology combines therapy and diagnosis and is a new field of medicine that specifically targets the disease by using targeted molecules to destroy the cancerous cells without damaging the surrounding healthy tissues.

Objective: We aimed to develop a tool that exploits enzymatic TQ release from glucuronide (G) for the imaging and treatment of lung cancer. We added magnetic nanoparticles (MNP) to enable magnetic hyperthermia and MRI, as well as 131I to enable SPECT imaging and radionuclide therapy.

View Article and Find Full Text PDF

FeO magnetic graft-Lys-poly(HEMA) was synthesized, labeled with Tc for the first time and its radiopharmaceutical potential was investigated using animal models in this study. Quality control procedures were carried out using thin layer radiochromatography. The labeling yield of radiolabeled polymer was found to be about 100%.

View Article and Find Full Text PDF

Fluorodeoxyglucose-conjugated magnetic nanoparticles, designed to target cancer cells with high specificity when heated by an alternating magnetic field, could provide a low-cost, non-toxic treatment for cancer. However, it is essential that the in vivo impacts of such technologies on both tumour and healthy tissues are characterised fully. Profiling tissue gene expression by semi-quantitative reverse transcriptase real-time PCR can provide a sensitive measurement of tissue response to treatment.

View Article and Find Full Text PDF

Purpose: Previously, fluorodeoxy glucose conjugated magnetite nanoparticles (FDG-mNPs) injected into cancer cells in conjunction with the application of magnetic hyperthermia have shown promise in new FDG-mNPs applications. The aim of this study was to determine potential toxic or unwanted effects involving both tumour cells and normal tissue in other organs when FDG-mNPs are administered intravenously or intratumourally in mice.

Materials And Methods: FDG-mNPs were synthesized.

View Article and Find Full Text PDF

Monte Carlo (MC) has demonstrated to be a suitable technique to evaluate the microdosimetric parameters at the cellular level for Boron Neutron Capture Therapy (BNCT). The objectives of the current study are first to validate GAMOS MC codes with different Geant4 physics models for the range calculations of alpha particles. Once the proper physics is selected, the second objective is to determine the distributions of deposited energy in cellular medium originated by alpha and lithium-7 particles induced by B(n,α)Li.

View Article and Find Full Text PDF

Nanostructured lipid carriers (NLCs) are the new generation of solid lipid drug delivery systems. Their suitability as contrast agents for gamma scintigraphy is an attracting major attention. The aim of current study was to prepare surface modified nanostructured lipid carrier system for paclitaxel (PTX) with active targeting and imaging functions.

View Article and Find Full Text PDF

Herein, we present a pilot study concerning the use of fluorodeoxy glucose conjugated magnetite nanoparticles (FDG-mNP) as a potential agent in magnetic nanoparticle mediated neuroblastoma cancer cell hyperthermia. This approach makes use of the 'Warburg effect', utilizing the fact that cancer cells have a higher metabolic rate than normal cells. FDG-mNP were synthesized, then applied to the SH-SY5Y neuroblastoma cancer cell line and exposed to an ac magnetic field.

View Article and Find Full Text PDF

The aim of this study is to synthesize D-Penicillamine (D-PA) conjugated magnetic nanocarriers for targeted purposes. Magnetic nanoparticles were prepared by partial reduction method and surface modification was done with an amino silane coupling agent's (structural properties), AEAPS, the particles were characterized by Scanning Electron Microscope (SEM), X-ray Diffraction (XRD). After that D-PA was linked with the magnetic nanoparticles (MNPs) and has been radiolabeled with [99mTc(CO)3]+ core.

View Article and Find Full Text PDF

The reported studies related to black seed oil (BSO) and wheat germ oil (WGO) have illustrated that they have a wide range of biological activities. Therefore, enhancing the amount of bio-active compounds that caused higher cell based anti-oxidative effect as well as cell proliferation, etc. in seed oils, infusion of crude plant material has been gained importance as a traditional technique.

View Article and Find Full Text PDF

The aim of this study is to determine the incorporations of radiolabeled bleomycin ((131)I-BLM) and bleomycin-glucuronide ((131)I-BLMGLU) on PC-3 (human prostate carcinoma cell line), Caco-2 (human colon adenocarcinoma cell line), Hutu-80 (Human Duodenum adenocarcinoma cell line), and A549 (Human lung adenocarcinoma epithelial cell line) cancerous cell lines. For this purpose, BLM and BLMGLU enyzmatically synthesized were labeled with (131)I, quality control studies were done and the incorporation yields of (131)I-BLM and (131)I-BLMGLU on these cell lines were measured. Quality-control studies showed that the radiolabeling yields were obtained as 95% and 90% for (131)I-BLM and (131)I-BLMGLU, respectively.

View Article and Find Full Text PDF

Purpose: Since Technetium-99m ((99m)Tc) has favorable physical and chemical characteristics, it is widely used radioisotope in Nuclear Medicine. However, stannous dichloride (SnCl(2)) has been widely used as a reducing agent in labeling procedure of pharmaceutical with radionuclide, it has been realized that SnCl(2) have genotoxic and cytotoxic effects on biological systems. In previous studies, it has been shown that some herbal extract can reduce genotoxic and cytotoxic effects of SnCl(2).

View Article and Find Full Text PDF

The generation and fabrication of nanoscopic structures are of critical technological importance for future implementations in areas such as nanodevices and nanotechnology, biosensing, bioimaging, cancer targeting, and drug delivery. Applications of carbon nanotubes (CNTs) in biological fields have been impeded by the incapability of their visualization using conventional methods. Therefore, fluorescence labeling of CNTs with various probes under physiological conditions has become a significant issue for their utilization in biological processes.

View Article and Find Full Text PDF

Bleomycin-glucuronide (BLMG) is the glucuronide conjugate of BLM. In the present study, BLMG was primarily enzymatically synthesized by using a microsome preparate separated from rat liver, labeled with (131)I by iodogen method with the aim of generating a radionuclide-labeled prodrug, and investigated its bioaffinities with tumor-bearing Balb/C mice. Quality control procedures were carried out using thin-layer radiochromatography and high-performance liquid chromatography.

View Article and Find Full Text PDF

Purpose: Current study is focused on extraction with methanol, purification, labeling with (131)I using iodogen method of the yarrow plant and investigating in vivo biological activity using biodistribution and imaging studies on healthy animal models. The aim of the study is to contribute plant extracts to discover new drugs in the diagnosis and treatment of several diseases.

Methods: Nine female and nine male healthy Wistar albino rats, which were approximately 100-150 g in weight, were used for biodistribution studies.

View Article and Find Full Text PDF

A new architecture has been designed by the conjugation of [(18)F]2-fluoro-2-deoxy-D-glucose ((18)F-FDG), gold nanoparticles (AuNPs), and anti-metadherin (Anti-MTDH) antibody which is specific to the metadherin (MTDH) over-expressed on the surface of breast cancer cells. Mannose triflate molecule is used as a precursor for synthesis of (18)F-FDG by nucleophilic fluorination. For the conjugation of (18)F-FDG and AuNPs, cysteamine was first bound to mannose triflate (Man-CA) before synthesizing of (18)F-FDG which has cysteamine sides ((18)FDG-CA).

View Article and Find Full Text PDF

Purpose: People consume vegetables without the knowledge of the side effects of the biological and chemical contents and interactions between radiopharmaceuticals and herbal extract. To this end, current study is focused on the effects of broccoli extract on biodistribution of radiolabeled glucoheptonate ((99m)Tc-GH) and radiolabeling of blood components.

Methods: GH was labeled with (99m)Tc.

View Article and Find Full Text PDF

The current study was aimed at synthesizing a glucuronide derivative of D-penicillamine (D-PA) to be used for imaging purposes. First of all, D-PA-glucuronide (D-PA-Glu) was synthesized by experimental treatments starting with uridine 5'-diphospho-glucuronosyltransferase enzyme rich microsome preparate. Then, the synthesized compound was labeled with technetium ((99m)Tc) by using a reduction method with stannous chloride.

View Article and Find Full Text PDF

The metabolic comparison of bleomycin (BLM) and bleomycin-glucuronide (BLMG) radiolabeled with (99m)Tc ((99m)Tc-BLM and (99m)Tc-BLMG, respectively) has been investigated in this study. Quality control procedures were carried out using thin-layer radiochromatography and high-performance liquid chromatography. To compare the metabolic behavior of BLM and its glucuronide conjugate radiolabeled with (99m)Tc, scintigraphic, and biodistributional techniques were applied using male New Zealand rabbits and Albino Wistar rats.

View Article and Find Full Text PDF

Objective: In this study, we aimed to investigate the cytoprotective effect of L-carnitine against cisplatin-induced nephrotoxicity and to compare its efficacy with that of amifostin by quantitative renal Tc 99m DMSA uptake.

Material And Methods: Male Wistar rats were randomly divided into six groups of six animals each. 1) Control (saline; 5 ml/kg intraperitoneally); 2) L-carnitine (CAR; 300 mg/kg intraperitoneally); 3) Amifostine (AMI; 200 mg /kg intraperitoneally); 4) Cisplatin (CIS;7 mg/kg intraperitoneally); 5) Cisplatin plus L-carnitine (CIS + CAR); 6) Cisplatin plus amifostine (CIS + AMI).

View Article and Find Full Text PDF